scholarly journals Exhaled aerosol increases with COVID-19 infection, and risk factors of disease symptom severity

Author(s):  
David A. Edwards ◽  
Dennis Ausiello ◽  
Robert Langer ◽  
Jonathan Salzman ◽  
Tom Devlin ◽  
...  

ABSTRACTCoronavirus disease-19 (COVID-19) transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translates into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 74 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected by aerosol with SARS-CoV-2, we found that exhaled aerosol particles increase one to three orders of magnitude with aging, high BMI, and COVID-19 infection. These variances appear to be related to changes in airway mucus surface composition and the propensity for mucus surfaces to breakup into small droplets during acts of breathing. We also observed that 20% of those participating in our human study accounted for 80% of the overall exhaled bioaerosol, reflecting a bioaerosol distribution analogous to a classical 20:80 super spreader distribution.

2021 ◽  
Vol 118 (8) ◽  
pp. e2021830118 ◽  
Author(s):  
David A. Edwards ◽  
Dennis Ausiello ◽  
Jonathan Salzman ◽  
Tom Devlin ◽  
Robert Langer ◽  
...  

COVID-19 transmits by droplets generated from surfaces of airway mucus during processes of respiration within hosts infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. We studied respiratory droplet generation and exhalation in human and nonhuman primate subjects with and without COVID-19 infection to explore whether SARS-CoV-2 infection, and other changes in physiological state, translate into observable evolution of numbers and sizes of exhaled respiratory droplets in healthy and diseased subjects. In our observational cohort study of the exhaled breath particles of 194 healthy human subjects, and in our experimental infection study of eight nonhuman primates infected, by aerosol, with SARS-CoV-2, we found that exhaled aerosol particles vary between subjects by three orders of magnitude, with exhaled respiratory droplet number increasing with degree of COVID-19 infection and elevated BMI-years. We observed that 18% of human subjects (35) accounted for 80% of the exhaled bioaerosol of the group (194), reflecting a superspreader distribution of bioaerosol analogous to a classical 20:80 superspreader of infection distribution. These findings suggest that quantitative assessment and control of exhaled aerosol may be critical to slowing the airborne spread of COVID-19 in the absence of an effective and widely disseminated vaccine.


2019 ◽  
Vol 317 (4) ◽  
pp. L498-L509 ◽  
Author(s):  
Matthew R. Markovetz ◽  
Durai B. Subramani ◽  
William J. Kissner ◽  
Cameron B. Morrison ◽  
Ian C. Garbarine ◽  
...  

Muco-obstructive lung diseases (MOLDs), like cystic fibrosis and chronic obstructive pulmonary disease, affect a spectrum of subjects globally. In MOLDs, the airway mucus becomes hyperconcentrated, increasing osmotic and viscoelastic moduli and impairing mucus clearance. MOLD research requires relevant sources of healthy airway mucus for experimental manipulation and analysis. Mucus collected from endotracheal tubes (ETT) may represent such a source with benefits, e.g., in vivo production, over canonical sample types such as sputum or human bronchial epithelial (HBE) mucus. Ionic and biochemical compositions of ETT mucus from healthy human subjects were characterized and a stock of pooled ETT samples generated. Pooled ETT mucus exhibited concentration-dependent rheologic properties that agreed across spatial scales with reported individual ETT samples and HBE mucus. We suggest that the practical benefits compared with other sample types make ETT mucus potentially useful for MOLD research.


2006 ◽  
Vol 100 (3) ◽  
pp. 880-889 ◽  
Author(s):  
Joseph C. Anderson ◽  
Wayne J. E. Lamm ◽  
Michael P. Hlastala

Exhaled acetone is measured to estimate exposure or monitor diabetes and congestive heart failure. Interpreting this measurement depends critically on where acetone exchanges in the lung. Health professionals assume exhaled acetone originates from alveolar gas exchange, but experimental data and theoretical predictions suggest that acetone comes predominantly from airway gas exchange. We measured endogenous acetone in the exhaled breath to evaluate acetone exchange in the lung. The acetone concentration in the exhalate of healthy human subjects was measured dynamically with a quadrupole mass spectrometer and was plotted against exhaled volume. Each subject performed a series of breathing maneuvers in which the steady exhaled flow rate was the only variable. Acetone phase III had a positive slope (0.054 ± 0.016 liter−1) that was statistically independent of flow rate. Exhaled acetone concentration was normalized by acetone concentration in the alveolar air, as estimated by isothermal rebreathing. Acetone concentration in the rebreathed breath ranged from 0.8 to 2.0 parts per million. Normalized end-exhaled acetone concentration was dependent on flow and was 0.79 ± 0.04 and 0.85 ± 0.04 for the slow and fast exhalation rates, respectively. A mathematical model of airway and alveolar gas exchange was used to evaluate acetone transport in the lung. By doubling the connective tissue (epithelium + mucosal tissue) thickness, this model predicted accurately ( R2 = 0.94 ± 0.05) the experimentally measured expirograms and demonstrated that most acetone exchange occurred in the airways of the lung. Therefore, assays using exhaled acetone measurements need to be reevaluated because they may underestimate blood levels.


2007 ◽  
Vol 99 (4) ◽  
pp. 826-831 ◽  
Author(s):  
Kirsti Tiihonen ◽  
Tarja Suomalainen ◽  
Soile Tynkkynen ◽  
Nina Rautonen

The effects of a probiotic mixture (PRO), supplemented with either galacto-oligosaccharide (GOS) or polydextrose (PDX), on cell numbers of lactic acid bacteria (LAB) and bifidobacteria (BIF) were studied in conventional rats and healthy human subjects. In rats the baseline BIF cell numbers were below the detection limit and were increased by the 2-week GOSPRO intervention. In contrast baseline LAB numbers in rats were high and not affected by the treatments. The human study consisted of two independent but concurrent trials; both started with PRO followed by GOSPRO or PDXPRO periods. In the human subjects variation in numbers of BIF and LAB were high. The GOSPRO group exhibited high counts of faecal LAB and BIF at the start and showed little or no effects of the interventions. In contrast, the PDX group had low faecal LAB and BIF numbers at the start and clearly increased cell numbers of BIF after the PDXPRO period, and LAB after the PRO and PDXPRO period, compared with the run-in period. We propose here that responses to pro- and prebiotics are dependent on baseline numbers of LAB and/or BIF, and that the conventional rat model does not predict well the treatment responses in humans. The survival of PRO was presumably enhanced by the use of prebiotic supplementation and advocates the use of particular combinations of pro- and prebiotics.


2014 ◽  
Vol 222 (3) ◽  
pp. 171-178 ◽  
Author(s):  
Mareile Hofmann ◽  
Nathalie Wrobel ◽  
Simon Kessner ◽  
Ulrike Bingel

According to experimental and clinical evidence, the experiences of previous treatments are carried over to different therapeutic approaches and impair the outcome of subsequent treatments. In this behavioral pilot study we used a change in administration route to investigate whether the effect of prior treatment experience on a subsequent treatment depends on the similarity of both treatments. We experimentally induced positive or negative experiences with a topical analgesic treatment in two groups of healthy human subjects. Subsequently, we compared responses to a second, unrelated and systemic analgesic treatment between both the positive and negative group. We found that there was no difference in the analgesic response to the second treatment between the two groups. Our data indicate that a change in administration route might reduce the influence of treatment history and therefore be a way to reduce negative carry-over effects after treatment failure. Future studies will have to validate these findings in a fully balanced design including larger, clinical samples.


1968 ◽  
Vol 20 (01/02) ◽  
pp. 044-049 ◽  
Author(s):  
B Lipiński ◽  
K Worowski

SummaryIn the present paper described is a simple test for detecting soluble fibrin monomer complexes (SFMC) in blood. The test consists in mixing 1% protamine sulphate with diluted oxalated plasma or serum and reading the optical density at 6190 Å. In experiments with dog plasma, enriched with soluble fibrin complexes, it was shown that OD read in PS test is proportional to the amount of fibrin recovered from the precipitate. It was found that SFMC level in plasma increases in rabbits infused intravenously with thrombin and decreases after injection of plasmin with streptokinase. In both cases PS precipitable protein in serum is elevated indicating enhanced fibrinolysis. In healthy human subjects the mean value of OD readings in plasma and sera were found to be 0.30 and 0.11, while in patients with coronary thrombosis they are 0.64 and 0.05 respectively. The origin of SFMC in circulation under physiological and pathological conditions is discussed.


Author(s):  
Buqing Yi ◽  
Igor Nichiporuk ◽  
Matthias Feuerecker ◽  
Gustav Schelling ◽  
Alexander Chouker

Sign in / Sign up

Export Citation Format

Share Document