scholarly journals Real-time clinician text feeds from electronic health records

Author(s):  
James Teo ◽  
Vlad Dinu ◽  
William Bernal ◽  
Phil Davidson ◽  
Vitaliy Oliynyk ◽  
...  

AbstractAnalyses of search engine and social media feeds have been attempted for infectious disease outbreaks1, but have been found to be susceptible to artefactual distortions from health scares or keyword spamming in social media or the public internet 2–4. We describe an approach using real-time aggregation of keywords and phrases of free text from real-time clinician-generated documentation in electronic health records to produce a customisable real-time viral pneumonia signal providing up to 2 days warning for secondary care capacity planning. This low-cost approach is open-source, is locally customisable, is not dependent on any specific electronic health record system and can be deployed at multiple organisational scales.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
James T. H. Teo ◽  
Vlad Dinu ◽  
William Bernal ◽  
Phil Davidson ◽  
Vitaliy Oliynyk ◽  
...  

AbstractAnalyses of search engine and social media feeds have been attempted for infectious disease outbreaks, but have been found to be susceptible to artefactual distortions from health scares or keyword spamming in social media or the public internet. We describe an approach using real-time aggregation of keywords and phrases of freetext from real-time clinician-generated documentation in electronic health records to produce a customisable real-time viral pneumonia signal providing up to 4 days warning for secondary care capacity planning. This low-cost approach is open-source, is locally customisable, is not dependent on any specific electronic health record system and can provide an ensemble of signals if deployed at multiple organisational scales.


2020 ◽  
Vol 9 (1) ◽  
pp. e000778
Author(s):  
Craig Colling ◽  
Christoph Mueller ◽  
Gayan Perera ◽  
Nicola Funnell ◽  
Justin Sauer ◽  
...  

BackgroundThe use of antipsychotic drugs in dementia has been reported to be associated with increased risk of cerebrovascular events and mortality. There is an international drive to reduce the use of these agents in patients with dementia and to improve the safety of prescribing and monitoring in this area.ObjectivesThe aim of this project was to use enhanced automated regular feedback of information from electronic health records to improve the quality of antipsychotic prescribing and monitoring in people with dementia.MethodsThe South London and Maudsley NHS Foundation Trust (SLaM) incorporated antipsychotic monitoring forms into its electronic health records. The SLaM Clinical Record Interactive Search (CRIS) platform provides researcher access to de-identified health records, and natural language processing is used in CRIS to derive structured data from unstructured free text, including recorded diagnoses and medication. Algorithms were thus developed to ascertain patients with dementia receiving antipsychotic treatment and to determine whether monitoring forms had been completed. We used two improvement plan-do-study-act cycles to improve the accuracy of the algorithm for automated evaluation and provided monthly feedback on team performance.ResultsA steady increase in antipsychotic monitoring form completion was observed across the study period. The percentage of our sample with a completed antipsychotic monitoring form more than doubled from October 2017 (22%) to January 2019 (58%).Conclusion‘Real time’ monitoring and regular feedback to teams offer a time-effective approach, complementary to standard audit methods, to enhance the safer prescribing of high risk drugs.


2021 ◽  
Vol 12 (04) ◽  
pp. 816-825
Author(s):  
Yingcheng Sun ◽  
Alex Butler ◽  
Ibrahim Diallo ◽  
Jae Hyun Kim ◽  
Casey Ta ◽  
...  

Abstract Background Clinical trials are the gold standard for generating robust medical evidence, but clinical trial results often raise generalizability concerns, which can be attributed to the lack of population representativeness. The electronic health records (EHRs) data are useful for estimating the population representativeness of clinical trial study population. Objectives This research aims to estimate the population representativeness of clinical trials systematically using EHR data during the early design stage. Methods We present an end-to-end analytical framework for transforming free-text clinical trial eligibility criteria into executable database queries conformant with the Observational Medical Outcomes Partnership Common Data Model and for systematically quantifying the population representativeness for each clinical trial. Results We calculated the population representativeness of 782 novel coronavirus disease 2019 (COVID-19) trials and 3,827 type 2 diabetes mellitus (T2DM) trials in the United States respectively using this framework. With the use of overly restrictive eligibility criteria, 85.7% of the COVID-19 trials and 30.1% of T2DM trials had poor population representativeness. Conclusion This research demonstrates the potential of using the EHR data to assess the clinical trials population representativeness, providing data-driven metrics to inform the selection and optimization of eligibility criteria.


BMJ Open ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. e031373 ◽  
Author(s):  
Jennifer Anne Davidson ◽  
Amitava Banerjee ◽  
Rutendo Muzambi ◽  
Liam Smeeth ◽  
Charlotte Warren-Gash

IntroductionCardiovascular diseases (CVDs) are among the leading causes of death globally. Electronic health records (EHRs) provide a rich data source for research on CVD risk factors, treatments and outcomes. Researchers must be confident in the validity of diagnoses in EHRs, particularly when diagnosis definitions and use of EHRs change over time. Our systematic review provides an up-to-date appraisal of the validity of stroke, acute coronary syndrome (ACS) and heart failure (HF) diagnoses in European primary and secondary care EHRs.Methods and analysisWe will systematically review the published and grey literature to identify studies validating diagnoses of stroke, ACS and HF in European EHRs. MEDLINE, EMBASE, SCOPUS, Web of Science, Cochrane Library, OpenGrey and EThOS will be searched from the dates of inception to April 2019. A prespecified search strategy of subject headings and free-text terms in the title and abstract will be used. Two reviewers will independently screen titles and abstracts to identify eligible studies, followed by full-text review. We require studies to compare clinical codes with a suitable reference standard. Additionally, at least one validation measure (sensitivity, specificity, positive predictive value or negative predictive value) or raw data, for the calculation of a validation measure, is necessary. We will then extract data from the eligible studies using standardised tables and assess risk of bias in individual studies using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Data will be synthesised into a narrative format and heterogeneity assessed. Meta-analysis will be considered when a sufficient number of homogeneous studies are available. The overall quality of evidence will be assessed using the Grading of Recommendations, Assessment, Development and Evaluation tool.Ethics and disseminationThis is a systematic review, so it does not require ethical approval. Our results will be submitted for peer-review publication.PROSPERO registration numberCRD42019123898


2018 ◽  
Author(s):  
Kohei Kajiyama ◽  
Hiromasa Horiguchi ◽  
Takashi Okumura ◽  
Mizuki Morita ◽  
Yoshinobu Kano

Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Brittany M Bogle ◽  
Wayne D Rosamond ◽  
Aaron R Folsom ◽  
Paul Sorlie ◽  
Elsayed Z Soliman ◽  
...  

Background: Accurate community surveillance of cardiovascular disease requires hospital record abstraction, which is typically a manual process. The costly and time-intensive nature of manual abstraction precludes its use on a regional or national scale in the US. Whether an efficient system can accurately reproduce traditional community surveillance methods by processing electronic health records (EHRs) has not been established. Objective: We sought to develop and test an EHR-based system to reproduce abstraction and classification procedures for acute myocardial infarction (MI) as defined by the Atherosclerosis Risk in Communities (ARIC) Study. Methods: Records from hospitalizations in 2014 within ARIC community surveillance areas were sampled using a broad set of ICD discharge codes likely to harbor MI. These records were manually abstracted by ARIC study personnel and used to classify MI according to ARIC protocols. We requested EHRs in a unified data structure for the same hospitalizations at 6 hospitals and built programs to convert free text and structured data into the ARIC criteria elements necessary for MI classification. Per ARIC protocol, MI was classified based on cardiac biomarkers, cardiac pain, and Minnesota-coded electrocardiogram abnormalities. We compared MI classified from manually abstracted data to (1) EHR-based classification and (2) final ICD-9 coded discharge diagnoses (410-414). Results: These preliminary results are based on hospitalizations from 1 hospital. Of 684 hospitalizations, 355 qualified for full manual abstraction; 83 (23%) of these were classified as definite MI and 78 (22%) as probable MI. Our EHR-based abstraction is sensitive (>75%) and highly specific (>83%) in classifying ARIC-defined definite MI and definite or probable MI (Table). Conclusions: Our results support the potential of a process to extract comprehensive sets of data elements from EHR from different hospitals, with completeness and accuracy sufficient for a standardized definition of hospitalized MI.


2019 ◽  
Vol 1 (2) ◽  
pp. 57-61
Author(s):  
Sangeetha R ◽  
Harshini B ◽  
Shanmugapriya A ◽  
Rajagopal T.K.P.

This paper deals with the Electronic Health Records for storing information of the patient which consist of the medical reports. Electronic Health Records (EHRs) are entirely controlled by Hospitals instead of patients, which complicates seeking medical advices from different hospitals. In the existing system of storing details of the patients are very dependent on the servers of the organization. In the proposed all the information of the patient are stored in the blockchain by using the Metamask and these details are stored in the block chain as a blocks of data. Each block consists of the data which is encrypted data. Electronic Health Record (EHR) systems record health-related information on an individual so that it can be consulted by clinicians or staff for patient care. The data is encrypted by the algorithm known as SHA-256 which is used to encrypt all the data of the patients into a single line 256 bit encrypted text which will be stored in the block at etherscan. These records for not only useful for the consultation but also for creation of historic family health information tree that keeps track of genetic health issues and diseases it can also be used for any health service with the authorization from both the patient and medical organization.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2013
Author(s):  
Shams Ud Din ◽  
Zahoor Jan ◽  
Muhammad Sajjad ◽  
Maqbool Hussain ◽  
Rahman Ali ◽  
...  

Security and privacy are essential requirements, and their fulfillment is considered one of the most challenging tasks for healthcare organizations to manage patient data using electronic health records. Electronic health records (clinical notes, images, and documents) become more vulnerable to breaching patients’ privacy when shared with an external organization in the current arena of the internet of medical things (IoMT). Various watermarking techniques were introduced in the medical field to secure patients’ data. Most of the existing techniques focus on an image or document’s imperceptibility without considering the watermark(logo). In this research, a novel technique of watermarking is introduced, which supersedes the shortcomings of existing approaches. It guarantees the imperceptibility of the image/document and takes care of watermark(biometric), which is further passed through a process of recognition for claiming ownership. It extracts suitable frequencies from the transform domain using specialized filters to increase the robustness level. The extracted frequencies are modified by adding the biomedical information while considering the strength factor according to the human visual system. The watermarked frequencies are further decomposed through a singular value decomposition technique to increase payload capacity up to (256 × 256). Experimental results over a variety of medical and official images demonstrate the average peak signal-to-noise ratio (PSNR 54.43), and the normal correlation (N.C.) value is 1. PSNR and N.C. of the watermark were calculated after attacks. The proposed technique is working in real-time for embedding, extraction, and recognition of biometrics over the internet, and its uses can be realized in various platforms of IoMT technologies.


Rheumatology ◽  
2019 ◽  
Vol 59 (5) ◽  
pp. 1059-1065 ◽  
Author(s):  
Sizheng Steven Zhao ◽  
Chuan Hong ◽  
Tianrun Cai ◽  
Chang Xu ◽  
Jie Huang ◽  
...  

Abstract Objectives To develop classification algorithms that accurately identify axial SpA (axSpA) patients in electronic health records, and compare the performance of algorithms incorporating free-text data against approaches using only International Classification of Diseases (ICD) codes. Methods An enriched cohort of 7853 eligible patients was created from electronic health records of two large hospitals using automated searches (⩾1 ICD codes combined with simple text searches). Key disease concepts from free-text data were extracted using NLP and combined with ICD codes to develop algorithms. We created both supervised regression-based algorithms—on a training set of 127 axSpA cases and 423 non-cases—and unsupervised algorithms to identify patients with high probability of having axSpA from the enriched cohort. Their performance was compared against classifications using ICD codes only. Results NLP extracted four disease concepts of high predictive value: ankylosing spondylitis, sacroiliitis, HLA-B27 and spondylitis. The unsupervised algorithm, incorporating both the NLP concept and ICD code for AS, identified the greatest number of patients. By setting the probability threshold to attain 80% positive predictive value, it identified 1509 axSpA patients (mean age 53 years, 71% male). Sensitivity was 0.78, specificity 0.94 and area under the curve 0.93. The two supervised algorithms performed similarly but identified fewer patients. All three outperformed traditional approaches using ICD codes alone (area under the curve 0.80–0.87). Conclusion Algorithms incorporating free-text data can accurately identify axSpA patients in electronic health records. Large cohorts identified using these novel methods offer exciting opportunities for future clinical research.


Sign in / Sign up

Export Citation Format

Share Document