scholarly journals Fetal innate immunity contributes to the induction of atypical behaviors in a mouse model of maternal immune activation

2020 ◽  
Author(s):  
Eva K. Nichols ◽  
Hsiu-Chun Chuang ◽  
Matthew T. Davis ◽  
Kristina M. Geiger ◽  
Rick Z. Li ◽  
...  

SummaryMaternal immune activation (MIA) increases likelihood of altered neurodevelopmental outcomes. Maternal cytokines are proposed to affect fetal brain development in mice; however, the contribution of fetal immunity to neurodevelopmental disorders is largely unexplored. Here, we show that MIA mediated by Toll-like receptor 3 (TLR3), but not other TLRs, induces a specific set of behavioral phenotypes including decreased sociability and increased restricted repetitive behavior in offspring. Accordingly, these behavioral phenotypes were absent when offspring were deficient for Trif, the downstream adapter molecule of TLR3. Using single-cell RNA sequencing, we identified clusters of border-associated macrophages that were significantly enriched in the fetal brain following TLR3-MIA, and these clusters were diminished in Trif−/− fetal brains.Moreover, we found that triggering TLR3-TRIF in offspring can occur through transplacental viral infection, resulting in altered behavioral phenotypes. Collectively, our data indicate that fetal innate immunity contributes to MIA-induced atypical behaviors in mice.

2007 ◽  
Vol 27 (40) ◽  
pp. 10695-10702 ◽  
Author(s):  
S. E. P. Smith ◽  
J. Li ◽  
K. Garbett ◽  
K. Mirnics ◽  
P. H. Patterson

Author(s):  
Wadzanai Manjeese ◽  
Nontobeko E. Mvubu ◽  
Adrie J. C. Steyn ◽  
Thabisile Mpofana

The maternal system’s exposure to pathogens during pregnancy influences fetal brain development causing a persistent inflammation characterized by elevated pro-inflammatory cytokine levels in offspring. Mycobacterium tuberculosis (Mtb) is a global pathogen that causes tuberculosis, a pandemic responsible for health and economic burdens. Although it is known that maternal infections increase the risk of autism spectrum disorder (ASD), it is not known whether Mtb infection is sufficient to induce ASD associated behaviors, immune dysregulation and altered expression of synaptic regulatory genes. The current study infected pregnant Balb/c mice with Mtb H37Rv and valproic acid (VPA) individually and in combination. Plasma cytokine profiles were measured in offspring using the Bio-plex Th17 pro mouse cytokine panel. Mtb infection increased plasma interleukin (IL)-6 and IL-17A, while tumor necrosis factor alpha (TNF-α), interferon (IFN)-γ and IL-1β were reduced when compared with saline. Mtb-induced maternal immune activation (MIA) offspring displayed increased grooming behavior. The study also revealed dysregulation in gene expression of synaptic molecules in the cerebellum. MIA rescued the VPA-induced effects on self-grooming and social interaction behaviors. Our finding therefore highlights a potential role of Mtb as a MIA agent that can potentially contribute to ASD.


Author(s):  
Rachel L. Leon ◽  
Imran N. Mir ◽  
Christina L. Herrera ◽  
Kavita Sharma ◽  
Catherine Y. Spong ◽  
...  

Abstract Children with congenital heart disease (CHD) are living longer due to effective medical and surgical management. However, the majority have neurodevelopmental delays or disorders. The role of the placenta in fetal brain development is unclear and is the focus of an emerging field known as neuroplacentology. In this review, we summarize neurodevelopmental outcomes in CHD and their brain imaging correlates both in utero and postnatally. We review differences in the structure and function of the placenta in pregnancies complicated by fetal CHD and introduce the concept of a placental inefficiency phenotype that occurs in severe forms of fetal CHD, characterized by a myriad of pathologies. We propose that in CHD placental dysfunction contributes to decreased fetal cerebral oxygen delivery resulting in poor brain growth, brain abnormalities, and impaired neurodevelopment. We conclude the review with key areas for future research in neuroplacentology in the fetal CHD population, including (1) differences in structure and function of the CHD placenta, (2) modifiable and nonmodifiable factors that impact the hemodynamic balance between placental and cerebral circulations, (3) interventions to improve placental function and protect brain development in utero, and (4) the role of genetic and epigenetic influences on the placenta–heart–brain connection. Impact Neuroplacentology seeks to understand placental connections to fetal brain development. In fetuses with CHD, brain growth abnormalities begin in utero. Placental microstructure as well as perfusion and function are abnormal in fetal CHD.


Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e13
Author(s):  
Hager M. Kowash ◽  
Harry G. Potter ◽  
Nick Ashton ◽  
Reinmar Hager ◽  
Joanna C. Neill ◽  
...  

2012 ◽  
Vol 136 ◽  
pp. S188
Author(s):  
Krassimira A. Garbett ◽  
Elaine Y. Hsiao ◽  
Sara Kálmán ◽  
Paul H. Patterson ◽  
Károly Mirnics

Sign in / Sign up

Export Citation Format

Share Document