scholarly journals Co-evolutionary Distance Prediction for Flexibility Prediction

2020 ◽  
Author(s):  
Dominik Schwarz ◽  
Guy Georges ◽  
Sebastian Kelm ◽  
Jiye Shi ◽  
Anna Vangone ◽  
...  

ABSTRACTCo-evolution analysis can be used to accurately predict residue-residue contacts from multiple sequence alignments. The introduction of machine-learning techniques has enabled substantial improvements in precision and a shift from predicting binary contacts to predicting distances between pairs of residues. These developments have significantly improved the accuracy of de novo prediction of static protein structures. Here we examine the potential of these residue-residue distance predictions to predict protein flexibility rather than static structure. We used DMPfold to predict distance distributions for every residue pair in a set of proteins that showed both rigid and flexible behaviour. Residue pairs that were in contact in at least one reference structure were considered and classified as rigid, flexible or neither. The predicted distance distribution of each residue pair was analysed for local maxima of probability indicating the most likely distance or distances between a pair of residues. The average number of local maxima per residue pair was found to be different between the sets of rigid and flexible residue pairs. Flexible residue pairs more often had multiple local maxima in their predicted distance distribution than rigid residue pairs suggesting that the shape of predicted distance distributions is predictive of rigidity or flexibility of residue pairs.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7280 ◽  
Author(s):  
Adam J. Hockenberry ◽  
Claus O. Wilke

Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue–residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10–15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue–residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.


2018 ◽  
Author(s):  
Adam J. Hockenberry ◽  
Claus O. Wilke

Patterns of amino acid covariation in large protein sequence alignments can inform the prediction of de novo protein structures, binding interfaces, and mutational effects. While algorithms that detect these so-called evolutionary couplings between residues have proven useful for practical applications, less is known about how and why these methods perform so well, and what insights into biological processes can be gained from their application. Evolutionary coupling algorithms are commonly benchmarked by comparison to true structural contacts derived from solved protein structures. However, the methods used to determine true structural contacts are not standardized and different definitions of structural contacts may have important consequences for interpreting the results from evolutionary coupling analyses and understanding their overall utility. Here, we show that evolutionary coupling analyses are significantly more likely to identify structural contacts between side-chain atoms than between backbone atoms. We use both simulations and empirical analyses to highlight that purely backbone-based definitions of true residue–residue contacts (i.e., based on the distance between Cα atoms) may underestimate the accuracy of evolutionary coupling algorithms by as much as 40% and that a commonly used reference point (Cβ atoms) underestimates the accuracy by 10–15%. These findings show that co-evolutionary outcomes differ according to which atoms participate in residue–residue interactions and suggest that accounting for different interaction types may lead to further improvements to contact-prediction methods.Significance StatementEvolutionary couplings between residues within a protein can provide valuable information about protein structures, protein-protein interactions, and the mutability of individual residues. However, the mechanistic factors that determine whether two residues will co-evolve remains unknown. We show that structural proximity by itself is not sufficient for co-evolution to occur between residues. Rather, evolutionary couplings between residues are specifically governed by interactions between side-chain atoms. By contrast, intramolecular contacts between atoms in the protein backbone display only a weak signature of evolutionary coupling. These findings highlight that different types of stabilizing contacts exist within protein structures and that these types have a differential impact on the evolution of protein structures that should be considered in co-evolutionary applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leon Harrington ◽  
Jordan M. Fletcher ◽  
Tamara Heermann ◽  
Derek N. Woolfson ◽  
Petra Schwille

AbstractModules that switch protein-protein interactions on and off are essential to develop synthetic biology; for example, to construct orthogonal signaling pathways, to control artificial protein structures dynamically, and for protein localization in cells or protocells. In nature, the E. coli MinCDE system couples nucleotide-dependent switching of MinD dimerization to membrane targeting to trigger spatiotemporal pattern formation. Here we present a de novo peptide-based molecular switch that toggles reversibly between monomer and dimer in response to phosphorylation and dephosphorylation. In combination with other modules, we construct fusion proteins that couple switching to lipid-membrane targeting by: (i) tethering a ‘cargo’ molecule reversibly to a permanent membrane ‘anchor’; and (ii) creating a ‘membrane-avidity switch’ that mimics the MinD system but operates by reversible phosphorylation. These minimal, de novo molecular switches have potential applications for introducing dynamic processes into designed and engineered proteins to augment functions in living cells and add functionality to protocells.


2014 ◽  
Vol 70 (a1) ◽  
pp. C613-C613
Author(s):  
Jan Stránský ◽  
Tomáš Kovaľ ◽  
Lars Østergaard ◽  
Jarmila Dušková ◽  
Tereza Skálová ◽  
...  

Development of X-ray diffraction technologies have made de novo phasing of protein structures by single-wavelength anomalous dispersion by sulphur (S-SAD) more common. As anomalous differences in the sulphur atomic factors are in the order of errors of measurement, careful intensity reading and data processing are crucial. S-SAD was used for de novo phasing of a small 12 kDa protein with 4 sulphur atoms per molecule at 2.3 Å, where the data did not enable a straightforward structure solution. Data processing was performed using XDS [1] and scaling using XSCALE. The sulphur substructure was determined by SHELXD [2] and phases were obtained from SHELXE [2]. Both algorithms strongly depend on input parameters and default values did not lead to the correct phases. Therefore a systematic search of optimal values of several parameters was used to find a solution. This method helped to confirm sulphur substructure and to differentiate the handedness of the solutions. Moreover, a script for comfortable conversion of SHELX outputs to MTZ format was developed, using programmes included in the CCP4 package [3]. The previously unsolvable protein structure was successfully resolved with the described procedure. This work was supported by the Grant Agency of the Czech Technical University in Prague, (SGS13/219/OHK4/3T/14), the Czech Science Foundation (P302/11/0855), project BIOCEV CZ.1.05/1.1.00/02.0109 from the ERDF.


2008 ◽  
Vol 73 (1) ◽  
pp. 41-53
Author(s):  
Aleksandra Rakic ◽  
Petar Mitrasinovic

The present study characterizes using molecular dynamics simulations the behavior of the GAA (1186-1188) hairpin triloops with their closing c-g base pairs in large ribonucleoligand complexes (PDB IDs: 1njn, 1nwy, 1jzx). The relative energies of the motifs in the complexes with respect to that in the reference structure (unbound form of rRNA; PDB ID: 1njp) display the trends that agree with those of the conformational parameters reported in a previous study1 utilizing the de novo pseudotorsional (?,?) approach. The RNA regions around the actual RNA-ligand contacts, which experience the most substantial conformational changes upon formation of the complexes were identified. The thermodynamic parameters, based on a two-state conformational model of RNA sequences containing 15, 21 and 27 nucleotides in the immediate vicinity of the particular binding sites, were evaluated. From a more structural standpoint, the strain of a triloop, being far from the specific contacts and interacting primarily with other parts of the ribosome, was established as a structural feature which conforms to the trend of the average values of the thermodynamic variables corresponding to the three motifs defined by the 15-, 21- and 27-nucleotide sequences. From a more functional standpoint, RNA-ligand recognition is suggested to be presumably dictated by the types of ligands in the complexes.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e24227 ◽  
Author(s):  
Xiang Liu ◽  
Heng Zhang ◽  
Xiao-Jun Wang ◽  
Lan-Fen Li ◽  
Xiao-Dong Su

2021 ◽  
Author(s):  
Nathan Ennist ◽  
Zhenyu Zhao ◽  
Steven Stayrook ◽  
Bohdana Discher ◽  
P Leslie 'Les' Dutton ◽  
...  

Abstract Natural photosynthetic protein complexes capture sunlight to power the energetic catalysis that supports life on Earth. Yet these natural protein structures carry an evolutionary legacy of complexity and fragility that encumbers protein reengineering efforts and obfuscates the underlying design rules for light-driven charge separation. De novo development of a simplified photosynthetic reaction center protein can clarify practical engineering principles needed to build new enzymes for efficient solar-to-fuel energy conversion. Here we report the rational design, X-ray crystal structure, and electron transfer activity of a multi-cofactor protein that incorporates essential elements of photosynthetic reaction centers. This highly stable, modular artificial protein framework can be reconstituted in vitro with interchangeable redox centers for nanometer-scale photochemical charge separation. Transient absorption spectroscopy demonstrates Photosystem II-like tyrosine and metal cluster oxidation, and we measure charge separation lifetimes exceeding 100 ms, ideal for light-activated catalysis. This de novo-designed reaction center builds upon engineering guidelines established for charge separation in earlier synthetic photochemical triads and modified natural proteins, and it shows how synthetic biology may lead to a new generation of genetically encoded, light-powered catalysts for solar fuel production.


2018 ◽  
Vol 16 (02) ◽  
pp. 1840005 ◽  
Author(s):  
Dmitry Suplatov ◽  
Yana Sharapova ◽  
Daria Timonina ◽  
Kirill Kopylov ◽  
Vytas Švedas

The visualCMAT web-server was designed to assist experimental research in the fields of protein/enzyme biochemistry, protein engineering, and drug discovery by providing an intuitive and easy-to-use interface to the analysis of correlated mutations/co-evolving residues. Sequence and structural information describing homologous proteins are used to predict correlated substitutions by the Mutual information-based CMAT approach, classify them into spatially close co-evolving pairs, which either form a direct physical contact or interact with the same ligand (e.g. a substrate or a crystallographic water molecule), and long-range correlations, annotate and rank binding sites on the protein surface by the presence of statistically significant co-evolving positions. The results of the visualCMAT are organized for a convenient visual analysis and can be downloaded to a local computer as a content-rich all-in-one PyMol session file with multiple layers of annotation corresponding to bioinformatic, statistical and structural analyses of the predicted co-evolution, or further studied online using the built-in interactive analysis tools. The online interactivity is implemented in HTML5 and therefore neither plugins nor Java are required. The visualCMAT web-server is integrated with the Mustguseal web-server capable of constructing large structure-guided sequence alignments of protein families and superfamilies using all available information about their structures and sequences in public databases. The visualCMAT web-server can be used to understand the relationship between structure and function in proteins, implemented at selecting hotspots and compensatory mutations for rational design and directed evolution experiments to produce novel enzymes with improved properties, and employed at studying the mechanism of selective ligand’s binding and allosteric communication between topologically independent sites in protein structures. The web-server is freely available at https://biokinet.belozersky.msu.ru/visualcmat and there are no login requirements.


2020 ◽  
Vol 7 (8) ◽  
pp. 1410-1412
Author(s):  
Weijie Zhao ◽  
Chu Wang

Abstract Search ‘de novo protein design’ on Google and you will find the name David Baker in all results of the first page. Professor David Baker at the University of Washington and other scientists are opening up a new world of fantastic proteins. Protein is the direct executor of most biological functions and its structure and function are fully determined by its primary sequence. Baker's group developed the Rosetta software suite that enabled the computational prediction and design of protein structures. Being able to design proteins from scratch means being able to design executors for diverse purposes and benefit society in multiple ways. Recently, NSR interviewed Prof. Baker on this fast-developing field and his personal experiences.


2019 ◽  
Vol 36 (1) ◽  
pp. 104-111
Author(s):  
Shuichiro Makigaki ◽  
Takashi Ishida

Abstract Motivation Template-based modeling, the process of predicting the tertiary structure of a protein by using homologous protein structures, is useful if good templates can be found. Although modern homology detection methods can find remote homologs with high sensitivity, the accuracy of template-based models generated from homology-detection-based alignments is often lower than that from ideal alignments. Results In this study, we propose a new method that generates pairwise sequence alignments for more accurate template-based modeling. The proposed method trains a machine learning model using the structural alignment of known homologs. It is difficult to directly predict sequence alignments using machine learning. Thus, when calculating sequence alignments, instead of a fixed substitution matrix, this method dynamically predicts a substitution score from the trained model. We evaluate our method by carefully splitting the training and test datasets and comparing the predicted structure’s accuracy with that of state-of-the-art methods. Our method generates more accurate tertiary structure models than those produced from alignments obtained by other methods. Availability and implementation https://github.com/shuichiro-makigaki/exmachina. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document