scholarly journals Fine tuning cyclic-di-GMP signaling in Pseudomonas aeruginosa using the type 4 pili alignment complex

2020 ◽  
Author(s):  
Shanice S. Webster ◽  
Calvin K. Lee ◽  
William C. Schmidt ◽  
Gerard C. L. Wong ◽  
George A. O’Toole

AbstractTo initiate biofilm formation it is critical for bacteria to sense a surface and respond precisely. Type 4 pili (T4P) have been shown to be important in surface sensing, however, mechanism(s) driving downstream changes important for the switch to biofilm growth have not been clearly defined. Here, using macroscopic bulk assays and single cell tracking analyses of Pseudomonas aeruginosa, we uncover a new role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two hybrid and bimolecular fluorescence complementation assays show that PilO physically interacts with SadC and that the PilO-SadC interaction inhibits SadC’s activity resulting in decreased biofilm formation and increased motility. We show that disrupting the PilO-SadC interaction contributes to greater variation of cyclic-di-GMP levels among cells, thereby increasing cell-to-cell heterogeneity in the levels of this signal. Thus, this work shows that P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this nucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.Significance StatementT4P of P. aeruginosa are important for surface sensing and regulating intracellular cyclic-di-GMP levels. This work identifies a new role for the T4P alignment complex, previously known for its role in supporting pili biogenesis, in surface-dependent signaling. Furthermore, our findings indicate that P. aeruginosa uses a single DGC, via a complex web of protein-protein interactions, to integrate signaling through the T4P and the flagellar motor to fine-tune cyclic-di-GMP levels. A key implication of this work is that more than just regulating signal levels, cells must modulate the dynamic range of cyclic-di-GMP to precisely control the transition to a biofilm lifestyle.

2021 ◽  
Vol 118 (26) ◽  
pp. e2105566118
Author(s):  
Shanice S. Webster ◽  
Calvin K. Lee ◽  
William C. Schmidt ◽  
Gerard C. L. Wong ◽  
George A. O’Toole

To initiate biofilm formation, it is critical for bacteria to sense a surface and respond precisely to activate downstream components of the biofilm program. Type 4 pili (T4P) and increasing levels of c-di-GMP have been shown to be important for surface sensing and biofilm formation, respectively; however, mechanisms important in modulating the levels of this dinucleotide molecule to define a precise output response are unknown. Here, using macroscopic bulk assays and single-cell tracking analyses of Pseudomonas aeruginosa, we uncover a role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two-hybrid and bimolecular fluorescence complementation assays, combined with genetic studies, are consistent with a model whereby PilO interacts with SadC and that the PilO–SadC interaction inhibits SadC’s activity, resulting in decreased biofilm formation and increased motility. Using single-cell tracking, we monitor both the mean c-di-GMP and the variance of this dinucleotide in individual cells. Mutations that increase PilO–SadC interaction modestly, but significantly, decrease both the average and variance in c-di-GMP levels on a cell-by-cell basis, while mutants that disrupt PilO–SadC interaction increase the mean and variance of c-di-GMP levels. This work is consistent with a model wherein P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this dinucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098774
Author(s):  
Jinpeng Zou ◽  
Yang Liu ◽  
Ruiwei Guo ◽  
Yu Tang ◽  
Zhengrong Shi ◽  
...  

The drug resistance of Pseudomonas aeruginosa is a worldwide problem due to its great threat to human health. A crude extract of Angelica dahurica has been proved to have antibacterial properties, which suggested that it may be able to inhibit the biofilm formation of P. aeruginosa; initial exploration had shown that the crude extract could inhibit the growth of P. aeruginosa effectively. After the adaptive dose of coumarin was confirmed to be a potential treatment for the bacteria’s drug resistance, “coumarin-antibiotic combination treatments” (3 coumarins—simple coumarin, imperatorin, and isoimperatorin—combined with 2 antibiotics—ampicillin and ceftazidime) were examined to determine their capability to inhibit P. aeruginosa. The final results showed that (1) coumarin with either ampicillin or ceftazidime significantly inhibited the biofilm formation of P. aeruginosa; (2) coumarin could directly destroy mature biofilms; and (3) the combination treatment can synergistically enhance the inhibition of biofilm formation, which could significantly reduce the usage of antibiotics and bacterial resistance. To sum up, a coumarin-antibiotic combination treatment may be a potential way to inhibit the biofilm growth of P. aeruginosa and provides a reference for antibiotic resistance treatment.


2021 ◽  
Author(s):  
Swetha Kassety ◽  
Stefan Katharios-Lanwermeyer ◽  
George A. O’Toole ◽  
Carey D. Nadell

Pseudomonas aeruginosa strains PA14 and PAO1 are among the two best characterized model organisms used to study the mechanisms of biofilm formation, while also representing two distinct lineages of P. aeruginosa . Previous work has shown that PA14 and PAO1 use different strategies for surface colonization; they also have different extracellular matrix composition and different propensities to disperse from biofilms back into the planktonic phase surrounding them. We expand on this work here by exploring the consequences of these different biofilm production strategies during direct competition. Using differentially labeled strains and microfluidic culture methods, we show that PAO1 can outcompete PA14 in direct competition during early colonization and subsequent biofilm growth, that they can do so in constant and perturbed environments, and that this advantage is specific to biofilm growth and requires production of the Psl polysaccharide. In contrast, the P. aeruginosa PA14 is better able to invade pre-formed biofilms and is more inclined to remain surface-associated under starvation conditions. These data together suggest that while P. aeruginosa PAO1 and PA14 are both able to effectively colonize surfaces, they do so in different ways that are advantageous under different environmental settings. Importance Recent studies indicate that P. aeruginosa PAO1 and PA14 use distinct strategies to initiate biofilm formation. We investigated whether their respective colonization and matrix secretion strategies impact their ability to compete under different biofilm-forming regimes. Our work shows that these different strategies do indeed impact how these strains fair in direct competition: PAO1 dominates during colonization of a naïve surface, while PA14 is more effective in colonizing a pre-formed biofilm. These data suggest that even for very similar microbes there can be distinct strategies to successfully colonize and persist on surfaces during the biofilm life cycle.


2013 ◽  
Vol 57 (4) ◽  
pp. 1921-1925 ◽  
Author(s):  
Kenneth S. Brandenburg ◽  
Karien J. Rodriguez ◽  
Jonathan F. McAnulty ◽  
Christopher J. Murphy ◽  
Nicholas L. Abbott ◽  
...  

ABSTRACTBiofilm formation byPseudomonas aeruginosahas been implicated in the pathology of chronic wounds. Both thedandlisoforms of tryptophan inhibitedP. aeruginosabiofilm formation on tissue culture plates, with an equimolar ratio ofdandlisoforms producing the greatest inhibitory effect. Addition ofd-/l-tryptophan to existing biofilms inhibited further biofilm growth and caused partial biofilm disassembly. Tryptophan significantly increased swimming motility, which may be responsible in part for diminished biofilm formation byP. aeruginosa.


2019 ◽  
Author(s):  
Catherine R. Armbruster ◽  
Calvin K. Lee ◽  
Jessica Parker-Gilham ◽  
Jaime de Anda ◽  
Aiguo Xia ◽  
...  

AbstractThe second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition from planktonic to biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. The current thinking in the field is that once cells attach to a surface, they uniformly respond with elevated c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration.


Author(s):  
Adithi R. Varadarajan ◽  
Raymond N. Allan ◽  
Jules D. P. Valentin ◽  
Olga E. Castañeda Ocampo ◽  
Vincent Somerville ◽  
...  

AbstractPseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and antibiotic resistance.Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and missed genes by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq datasets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth. Experiments conducted across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated both known and novel genes involved in biofilm growth and antibiotic resistance identified in screens of the mutant collection. Differential protein expression data from planktonic cells versus biofilm confirmed upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type six secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance and resistance evolution.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Catherine R Armbruster ◽  
Calvin K Lee ◽  
Jessica Parker-Gilham ◽  
Jaime de Anda ◽  
Aiguo Xia ◽  
...  

The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration.


Nano LIFE ◽  
2012 ◽  
Vol 02 (04) ◽  
pp. 1242004 ◽  
Author(s):  
JOHN F. LING ◽  
MARY V. GRAHAM ◽  
NATHANIEL C. CADY

Bacterial pathogens, such as Pseudomonas aeruginosa, readily form biofilms on surfaces, limiting the efficacy of antimicrobial and antibiotic treatments. To mitigate biofilm formation, surfaces are often treated with antimicrobial agents, which have limited lifetime and efficacy. Recent studies have shown that well-ordered topographic patterns can limit bacterial attachment to surfaces and limit biofilm formation. In this study, nano and microscale patterned poly(dimethylsiloxane) surfaces were evaluated for their ability to affect adhesion and biofilm formation by Pseudomonas aeruginosa. Feature size and spacing were varied from 500 nm to 2 μm and included repeating arrays of square pillars, holes, lines and biomimetc Sharklet™ patterns. Bacterial surface adhesion and biofilm formation was assessed in microfluidic flow devices and under static conditions. Attachment profiles under static and fluid flow varied within topography types, sizes and spacing. Pillar structures of all sizes yielded lower surface attachment than line-based patterns and arrays of holes. This trend was also observed for biomimetic Sharklet™ patterns, with reduced bacterial attachment to "raised" features as compared to "recessed" features. Notably, none of the topographically patterned surfaces outperformed smooth surfaces (without topography) for resisting cell adhesion. Initial surface attachment patterns were indicative of subsequent biofilm formation and coverage, suggesting a direct role of surface topography in biofilm-based biofouling.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Adithi R. Varadarajan ◽  
Raymond N. Allan ◽  
Jules D. P. Valentin ◽  
Olga E. Castañeda Ocampo ◽  
Vincent Somerville ◽  
...  

Abstract Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms.


Sign in / Sign up

Export Citation Format

Share Document