scholarly journals The ApiAP2 factor PfAP2-HC is an integral component of heterochromatin in the malaria parasite Plasmodium falciparum

2020 ◽  
Author(s):  
Eilidh Carrington ◽  
Roel H. M. Cooijmans ◽  
Dominique Keller ◽  
Christa G. Toenhake ◽  
Richárd Bártfai ◽  
...  

AbstractMalaria parasites undergo a highly complex life cycle in the human host and the mosquito vector. The ApiAP2 family of sequence-specific DNA-binding proteins plays a dominant role in parasite development and life cycle progression. Of the ApiAP2 factors studied to date, most act as transcription factors regulating stage-specific gene expression. Here, we characterised a new ApiAP2 factor in Plasmodium falciparum (PF3D7_1456000) that we termed PfAP2-HC. Via detailed investigation of several single or double genetically engineered parasite lines, we demonstrate that PfAP2-HC specifically binds to heterochromatin throughout the genome. Intriguingly, PfAP2-HC does not bind DNA in vivo and recruitment of PfAP2-HC to heterochromatin is independent of its DNA-binding domain but strictly dependent on heterochromatin protein 1. Furthermore, our results suggest that PfAP2-HC functions neither in the regulation of gene expression nor in heterochromatin formation or maintenance. In summary, our findings reveal that PfAP2-HC constitutes a core component of heterochromatin in malaria parasites. They furthermore identify unexpected properties of ApiAP2 factors and suggest substantial functional divergence among the members of this important family of regulatory proteins.

2018 ◽  
Author(s):  
Evelien M. Bunnik ◽  
Kate B. Cook ◽  
Nelle Varoquaux ◽  
Gayani Batugedara ◽  
Jacques Prudhomme ◽  
...  

ABSTRACTThe development of malaria parasites throughout their various life cycle stages is controlled by coordinated changes in gene expression. We previously showed that the three-dimensional organization of the P. falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyzed genome organization in the P. falciparum and P. vivax transmission stages. Major changes occurred in the localization and interactions of genes involved in pathogenesis and immune evasion, erythrocyte and liver cell invasion, sexual differentiation and master regulation of gene expression. In addition, we observed reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Overall, our results suggest that the three-dimensional genome structure is strongly connected with transcriptional activity of specific gene families throughout the life cycle of human malaria parasites.


Author(s):  
Riward Campelo Morillo ◽  
Xinran Tong ◽  
Wei Xie ◽  
Todd Lenz ◽  
Gayani Batugedara ◽  
...  

ABSTRACTTransmission of Plasmodium falciparum and other malaria parasites requires their differentiation from asexual blood stages into gametocytes, the non-replicative sexual stage necessary for transmission to the mosquito vector. This transition involves changes in gene expression and chromatin reorganization mediating the silencing and activation of stage-specific genes. However, malaria parasites have been noted for their dearth of transcriptional and chromatin regulators and the molecular mediators of these changes remain largely unknown. We identified Homeodomain protein 1 (HDP1) as a novel chromatin-associated DNA-binding protein that drives changes in chromatin structure and gene expression during early sexual differentiation. This discovery of a homeodomain-like DNA-binding protein marks a new class of transcriptional regulator in malaria parasites outside of the better-characterized ApiAP2 family. In this study, we demonstrate that HDP1 is required for gametocyte maturation and parasite transmission by driving the necessary upregulation of inner membrane complex components in early gametocytes.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Marta Tibúrcio ◽  
Annie S. P. Yang ◽  
Kazuhide Yahata ◽  
Pablo Suárez-Cortés ◽  
Hugo Belda ◽  
...  

ABSTRACT Plasmodium falciparum has a complex life cycle that involves interaction with multiple tissues inside the human and mosquito hosts. Identification of essential genes at all different stages of the P. falciparum life cycle is urgently required for clinical development of tools for malaria control and eradication. However, the study of P. falciparum is limited by the inability to genetically modify the parasite throughout its life cycle with the currently available genetic tools. Here, we describe the detailed characterization of a new marker-free P. falciparum parasite line that expresses rapamycin-inducible Cre recombinase across the full life cycle. Using this parasite line, we were able to conditionally delete the essential invasion ligand AMA1 in three different developmental stages for the first time. We further confirm efficient gene deletion by targeting the nonessential kinase FIKK7.1. IMPORTANCE One of the major limitations in studying P. falciparum is that so far only asexual stages are amenable to rapid conditional genetic modification. The most promising drug targets and vaccine candidates, however, have been refractory to genetic modification because they are essential during the blood stage or for transmission in the mosquito vector. This leaves a major gap in our understanding of parasite proteins in most life cycle stages and hinders genetic validation of drug and vaccine targets. Here, we describe a method that supports conditional gene deletion across the P. falciparum life cycle for the first time. We demonstrate its potential by deleting essential and nonessential genes at different parasite stages, which opens up completely new avenues for the study of malaria and drug development. It may also allow the realization of novel vaccination strategies using attenuated parasites.


2019 ◽  
Vol 18 (5) ◽  
pp. 290-301 ◽  
Author(s):  
Christa G Toenhake ◽  
Richárd Bártfai

Abstract Malaria parasites are characterized by a complex life cycle that is accompanied by dynamic gene expression patterns. The factors and mechanisms that regulate gene expression in these parasites have been searched for even before the advent of next generation sequencing technologies. Functional genomics approaches have substantially boosted this area of research and have yielded significant insights into the interplay between epigenetic, transcriptional and post-transcriptional mechanisms. Recently, considerable progress has been made in identifying sequence-specific transcription factors and DNA-encoded regulatory elements. Here, we review the insights obtained from these efforts including the characterization of core promoters, the involvement of sequence-specific transcription factors in life cycle progression and the mapping of gene regulatory elements. Furthermore, we discuss recent developments in the field of functional genomics and how they might contribute to further characterization of this complex gene regulatory network.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (9) ◽  
pp. e1009801
Author(s):  
Karl M. Glastad ◽  
Linyang Ju ◽  
Shelley L. Berger

A key question in the rising field of neuroepigenetics is how behavioral plasticity is established and maintained in the developing CNS of multicellular organisms. Behavior is controlled through systemic changes in hormonal signaling, cell-specific regulation of gene expression, and changes in neuronal connections in the nervous system, however the link between these pathways is unclear. In the ant Camponotus floridanus, the epigenetic corepressor CoREST is a central player in experimentally-induced reprogramming of caste-specific behavior, from soldier (Major worker) to forager (Minor worker). Here, we show this pathway is engaged naturally on a large genomic scale during late pupal development targeting multiple genes differentially expressed between castes, and central to this mechanism is the protein tramtrack (ttk), a DNA binding partner of CoREST. Caste-specific differences in DNA binding of ttk co-binding with CoREST correlate with caste-biased gene expression both in the late pupal stage and immediately after eclosion. However, we find a unique set of exclusive Minor-bound genes that show ttk pre-binding in the late pupal stage preceding CoREST binding, followed by caste-specific gene repression on the first day of eclosion. In addition, we show that ttk binding correlates with neurogenic Notch signaling, and that specific ttk binding between castes is enriched for regulatory sites associated with hormonal function. Overall our findings elucidate a pathway of transcription factor binding leading to a repressive epigenetic axis that lies at the crux of development and hormonal signaling to define worker caste identity in C. floridanus.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Tsai-Ming Lu ◽  
Hidetaka Furuya ◽  
Noriyuki Satoh

Abstract Metazoans have evolved a great variety of life histories in response to environmental conditions. A unique example is encountered in dicyemid mesozoans. In addition to a highly simplified adult body comprising only ~ 30 cells, dicyemids exhibit a parasitic lifestyle that includes nematogens (asexual reproductive adults), rhombogens (sexual reproductive adults), vermiform larvae generated by nematogens, and infusoriform larvae generated by rhombogens. However, due to the difficulties of observing microscopic endoparasites, the complex life cycle and biological functions of life-cycle stages of dicyemids have remained mysterious. Taking advantage of the recently decoded genome of Dicyema japonicum, we examined genes that undergird this lifestyle. Using stage-specific gene expression profiles, we found that biological processes associated with molecular transport, developmental regulation, and sensory response are specified at different stages. Together with the expression of potential neurotransmitters, we further suggest that apical cells in infusoriform larva probably serve sensory functions, although dicyemids have no nervous system. Gene expression profiles show that more genes are expressed in free-living infusoriform larvae than in the other three stages, and that some of these genes are likely involved in locating new hosts. These data provide molecular information about the unique lifestyle of dicyemids and illustrate how an extremely simplified endoparasite adapted and retained gene sets and morphological characters to complete its life cycle.


2018 ◽  
Vol 87 (1) ◽  
Author(s):  
K. Govindasamy ◽  
R. Khan ◽  
M. Snyder ◽  
H. J. Lou ◽  
P. Du ◽  
...  

ABSTRACT Malaria is caused by the protozoan parasite Plasmodium, which undergoes a complex life cycle in a human host and a mosquito vector. The parasite’s cyclic GMP (cGMP)-dependent protein kinase (PKG) is essential at multiple steps of the life cycle. Phosphoproteomic studies in Plasmodium falciparum erythrocytic stages and Plasmodium berghei ookinetes have identified proteolysis as a major biological pathway dependent on PKG activity. To further understand PKG’s mechanism of action, we screened a yeast two-hybrid library for P. falciparum proteins that interact with P. falciparum PKG (PfPKG) and tested peptide libraries to identify its phosphorylation site preferences. Our data suggest that PfPKG has a distinct phosphorylation site and that PfPKG directly phosphorylates parasite RPT1, one of six AAA+ ATPases present in the 19S regulatory particle of the proteasome. PfPKG and RPT1 interact in vitro, and the interacting fragment of RPT1 carries a PfPKG consensus phosphorylation site; a peptide carrying this consensus site competes with the RPT1 fragment for binding to PfPKG and is efficiently phosphorylated by PfPKG. These data suggest that PfPKG’s phosphorylation of RPT1 could contribute to its regulation of parasite proteolysis. We demonstrate that proteolysis plays an important role in a biological process known to require Plasmodium PKG: invasion by sporozoites of hepatocytes. A small-molecule inhibitor of proteasomal activity blocks sporozoite invasion in an additive manner when combined with a Plasmodium PKG-specific inhibitor. Mining the previously described parasite PKG-dependent phosphoproteomes using the consensus phosphorylation motif identified additional proteins that are likely to be direct substrates of the enzyme.


2021 ◽  
Author(s):  
SUDHIR KUMAR ◽  
Meseret T. Haile ◽  
Michael R. Hoopmann ◽  
Linh T. Tran ◽  
Samantha A. Michaels ◽  
...  

Gametocytes of the malaria parasite Plasmodium are taken up by the mosquito vector with an infectious blood meal, representing a critical stage for parasite transmission. Calcium dependent protein kinases play key roles in calcium mediated signaling across the complex life cycle of the parasite. We sought to understand their role in human parasite transmission from the host to the mosquito vector and thus investigated the role of the human infective parasite Plasmodium falciparum CDPK4 in the parasite life cycle. P. falciparum cdpk4 parasites created by targeted gene deletion showed no effect in blood stage development or gametocyte development. However, cdpk4 parasites showed a severe defect in male gametogenesis and the emergence of flagellated male gametes. To understand the molecular underpinnings of this defect, we performed mass spectrometry based phosphoproteomic analyses of wild type and Plasmodium falciparum cdpk4 late gametocyte stages, to identify key CDPK4 mediated phosphorylation events that may be important for the regulation of male gametogenesis. We further employed in vitro assays to identify these putative substrates of Plasmodium falciparum CDPK4. This indicated that CDPK4 regulates male gametogenesis by directly or indirectly controlling key essential events such as DNA replication, mRNA translation and cell motility. Taken together, our work demonstrates that PfCDPK4 is a central kinase that regulates exflagellation, and thereby is critical for parasite transmission to the mosquito vector.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jatin Behari ◽  
Pranita Borkar ◽  
Arya Vindu ◽  
Vishal Dandewad ◽  
Sindhuri Upadrasta ◽  
...  

Plasmodium falciparum is a causative agent for malaria and has a complex life cycle in human and mosquito hosts. During its life cycle, the malarial parasite Plasmodium goes through different asexual and sexual stages, in humans and mosquitoes. Expression of stage-specific proteins is important for successful completion of its life cycle and requires tight gene regulation. In the case of Plasmodium, due to relative paucity of the transcription factors, it is postulated that posttranscriptional regulation plays an important role in stage-specific gene expression. Translation repression of specific set of mRNA has been reported in gametocyte stages of the parasite. A conserved element present in the 3′UTR of some of these transcripts was identified. Phosphatidylinositol 5-phosphate 4-kinase (PIP4K2A) was identified as the protein that associates with these RNA. We now show that the RNA binding activity of PIP4K2A is independent of its kinase activity. We also observe that PIP4K2A is imported into the parasite from the host on Plasmodium berghei and Toxoplasma gondii. The RNA binding activity of PIP4K2A seems to be conserved across species from Drosophila and C. elegans to humans, suggesting that the RNA binding activity of PIP4K may be important, and there may be host transcripts that may be regulated by PIP4K2A. These results identify a novel RNA binding role for PIP4K2A that may not only play a role in Plasmodium propagation but may also function in regulating gene expression in multicellular organisms.


Sign in / Sign up

Export Citation Format

Share Document