scholarly journals precisionFDA Truth Challenge V2: Calling variants from short- and long-reads in difficult-to-map regions

Author(s):  
Nathan D. Olson ◽  
Justin Wagner ◽  
Jennifer McDaniel ◽  
Sarah H. Stephens ◽  
Samuel T. Westreich ◽  
...  

SummaryThe precisionFDA Truth Challenge V2 aimed to assess the state-of-the-art of variant calling in difficult-to-map regions and the Major Histocompatibility Complex (MHC). Starting with FASTQ files, 20 challenge participants applied their variant calling pipelines and submitted 64 variant callsets for one or more sequencing technologies (~35X Illumina, ~35X PacBio HiFi, and ~50X Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with the new GIAB benchmark sets and genome stratifications. Challenge submissions included a number of innovative methods for all three technologies, with graph-based and machine-learning methods scoring best for short-read and long-read datasets, respectively. New methods out-performed the 2016 Truth Challenge winners, and new machine-learning approaches combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

2021 ◽  
Vol 12 ◽  
Author(s):  
Davide Bolognini ◽  
Alberto Magi

Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides and are known to have a serious impact on human health. While prior short-read sequencing technologies have often proved inadequate for a comprehensive assessment of structural variation, more recent long reads from Oxford Nanopore Technologies have already been proven invaluable for the discovery of large SVs and hold the potential to facilitate the resolution of the full SV spectrum. With many long-read sequencing studies to follow, it is crucial to assess factors affecting current SV calling pipelines for nanopore sequencing data. In this brief research report, we evaluate and compare the performances of five long-read SV callers across four long-read aligners using both real and synthetic nanopore datasets. In particular, we focus on the effects of read alignment, sequencing coverage, and variant allele depth on the detection and genotyping of SVs of different types and size ranges and provide insights into precision and recall of SV callsets generated by integrating the various long-read aligners and SV callers. The computational pipeline we propose is publicly available at https://github.com/davidebolo1993/EViNCe and can be adjusted to further evaluate future nanopore sequencing datasets.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Jean-Marc Aury ◽  
Benjamin Istace

Abstract Single-molecule sequencing technologies have recently been commercialized by Pacific Biosciences and Oxford Nanopore with the promise of sequencing long DNA fragments (kilobases to megabases order) and then, using efficient algorithms, provide high quality assemblies in terms of contiguity and completeness of repetitive regions. However, the error rate of long-read technologies is higher than that of short-read technologies. This has a direct consequence on the base quality of genome assemblies, particularly in coding regions where sequencing errors can disrupt the coding frame of genes. In the case of diploid genomes, the consensus of a given gene can be a mixture between the two haplotypes and can lead to premature stop codons. Several methods have been developed to polish genome assemblies using short reads and generally, they inspect the nucleotide one by one, and provide a correction for each nucleotide of the input assembly. As a result, these algorithms are not able to properly process diploid genomes and they typically switch from one haplotype to another. Herein we proposed Hapo-G (Haplotype-Aware Polishing Of Genomes), a new algorithm capable of incorporating phasing information from high-quality reads (short or long-reads) to polish genome assemblies and in particular assemblies of diploid and heterozygous genomes.


2017 ◽  
Author(s):  
Jia-Xing Yue ◽  
Gianni Liti

AbstractLong-read sequencing technologies have become increasingly popular in genome projects due to their strengths in resolving complex genomic regions. As a leading model organism with small genome size and great biotechnological importance, the budding yeast, Saccharomyces cerevisiae, has many isolates currently being sequenced with long reads. However, analyzing long-read sequencing data to produce high-quality genome assembly and annotation remains challenging. Here we present LRSDAY, the first one-stop solution to streamline this process. LRSDAY can produce chromosome-level end-to-end genome assembly and comprehensive annotations for various genomic features (including centromeres, protein-coding genes, tRNAs, transposable elements and telomere-associated elements) that are ready for downstream analysis. Although tailored for S. cerevisiae, we designed LRSDAY to be highly modular and customizable, making it adaptable for virtually any eukaryotic organisms. Applying LRSDAY to a S. cerevisiae strain takes ∼43 hrs to generate a complete and well-annotated genome from ∼100X Pacific Biosciences (PacBio) reads using four threads.


Author(s):  
Umair Ahsan ◽  
Qian Liu ◽  
Li Fang ◽  
Kai Wang

AbstractVariant (SNPs/indels) detection from high-throughput sequencing data remains an important yet unresolved problem. Long-read sequencing enables variant detection in difficult-to-map genomic regions that short-read sequencing cannot reliably examine (for example, only ~80% of genomic regions are marked as “high-confidence region” to have SNP/indel calls in the Genome In A Bottle project); however, the high per-base error rate poses unique challenges in variant detection. Existing methods on long-read data typically rely on analyzing pileup information from neighboring bases surrounding a candidate variant, similar to short-read variant callers, yet the benefits of much longer read length are not fully exploited. Here we present a deep neural network called NanoCaller, which detects SNPs by examining pileup information solely from other nonadjacent candidate SNPs that share the same long reads using long-range haplotype information. With called SNPs by NanoCaller, NanoCaller phases long reads and performs local realignment on two sets of phased reads to call indels by another deep neural network. Extensive evaluation on 5 human genomes (sequenced by Nanopore and PacBio long-read techniques) demonstrated that NanoCaller greatly improved performance in difficult-to-map regions, compared to other long-read variant callers. We experimentally validated 41 novel variants in difficult-to-map regions in a widely-used benchmarking genome, which cannot be reliably detected previously. We extensively evaluated the run-time characteristics and the sensitivity of parameter settings of NanoCaller to different characteristics of sequencing data. Finally, we achieved the best performance in Nanopore-based variant calling from MHC regions in the PrecisionFDA Variant Calling Challenge on Difficult-to-Map Regions by ensemble calling. In summary, by incorporating haplotype information in deep neural networks, NanoCaller facilitates the discovery of novel variants in complex genomic regions from long-read sequencing data.


2021 ◽  
Author(s):  
Brandon K. B. Seah ◽  
Estienne C. Swart

Ciliates are single-celled eukaryotes that eliminate specific, interspersed DNA sequences (internally eliminated sequences, IESs) from their genomes during development. These are challenging to annotate and assemble because IES-containing sequences are much less abundant in the cell than those without, and IES sequences themselves often contain repetitive and low-complexity sequences. Long read sequencing technologies from Pacific Biosciences and Oxford Nanopore have the potential to reconstruct longer IESs than has been possible with short reads, and also the ability to detect correlations of neighboring element elimination. Here we present BleTIES, a software toolkit for detecting, assembling, and analyzing IESs using mapped long reads. Availability and implementation: BleTIES is implemented in Python 3. Source code is available at https://github.com/Swart-lab/bleties (MIT license), and also distributed via Bioconda. Contact: [email protected] Supplementary information: Benchmarking of BleTIES with published sequence data.


2019 ◽  
Author(s):  
Lolita Lecompte ◽  
Pierre Peterlongo ◽  
Dominique Lavenier ◽  
Claire Lemaitre

AbstractMotivationStudies on structural variants (SV) are expanding rapidly. As a result, and thanks to third generation sequencing technologies, the number of discovered SVs is increasing, especially in the human genome. At the same time, for several applications such as clinical diagnoses, it is important to genotype newly sequenced individuals on well defined and characterized SVs. Whereas several SV genotypers have been developed for short read data, there is a lack of such dedicated tool to assess whether known SVs are present or not in a new long read sequenced sample, such as the one produced by Pacific Biosciences or Oxford Nanopore Technologies.ResultsWe present a novel method to genotype known SVs from long read sequencing data. The method is based on the generation of a set of reference sequences that represent the two alleles of each structural variant. Long reads are aligned to these reference sequences. Alignments are then analyzed and filtered out to keep only informative ones, to quantify and estimate the presence of each SV allele and the allele frequencies. We provide an implementation of the method, SVJedi, to genotype insertions and deletions with long reads. The tool has been applied to both simulated and real human datasets and achieves high genotyping accuracy. We also demonstrate that SV genotyping is considerably improved with SVJedi compared to other approaches, namely SV discovery and short read SV genotyping approaches.Availabilityhttps://github.com/llecompte/[email protected]


2018 ◽  
Author(s):  
Andrew J. Page ◽  
Jacqueline A. Keane

AbstractGenome sequencing is rapidly being adopted in reference labs and hospitals for bacterial outbreak investigation and diagnostics where time is critical. Seven gene multi-locus sequence typing is a standard tool for broadly classifying samples into sequence types, allowing, in many cases, to rule a sample in or out of an outbreak, or allowing for general characteristics about a bacterial strain to be inferred. Long read sequencing technologies, such as from PacBio or Oxford Nanopore, can produce read data within minutes of an experiment starting, unlike short read sequencing technologies which require many hours/days. However, the error rates of raw uncorrected long read data are very high. We present Krocus which can predict a sequence type directly from uncorrected long reads, and which was designed to consume read data as it is produced, providing results in minutes. It is the only tool which can do this from uncorrected long reads. We tested Krocus on over 600 samples sequenced with using long read sequencing technologies from PacBio and Oxford Nanopore. It provides sequence types on average within 90 seconds, with a sensitivity of 94% and specificity of 97%, directly from uncorrected raw sequence reads. The software is written in Python and is available under the open source license GNU GPL version 3.


2021 ◽  
Author(s):  
Jean-Marc Aury ◽  
Stefan Engelen ◽  
Benjamin Istace ◽  
Cécile Monat ◽  
Pauline Lasserre-Zuber ◽  
...  

AbstractThe sequencing of the wheat (Triticum aestivum) genome has been a methodological challenge for many years due to its large size (15.5 Gb), repeat content, and hexaploidy. Many initiatives aiming at obtaining a reference genome of cultivar Chinese Spring have been launched in the past years and it was achieved in 2018 as the result of a huge effort to combine short-read whole genome sequencing with many other resources. Reference-quality genome assemblies were then produced for other accessions but the rapid evolution of sequencing technologies offers opportunities to reach high-quality standards at lower cost. Here, we report on an optimized procedure based on long-reads produced on the ONT (Oxford Nanopore Technology) PromethION device to assemble the genome of the French bread wheat cultivar Renan. We provide the most contiguous and complete chromosome-scale assembly of a bread wheat genome to date, a resource that will be valuable for the crop community and will facilitate the rapid selection of agronomically important traits. We also provide the methodological standards to generate high-quality assemblies of complex genomes.


Author(s):  
Eva F. Caceres ◽  
William H. Lewis ◽  
Felix Homa ◽  
Tom Martin ◽  
Andreas Schramm ◽  
...  

AbstractAsgard archaea is a recently proposed superphylum currently comprised of five recognised phyla: Lokiarchaeota, Thorarchaeota, Odinarchaeota, Heimdallarchaeota and Helarchaeota. Members of this group have been identified based on culture-independent approaches with several metagenome-assembled genomes (MAGs) reconstructed to date. However, most of these genomes consist of several relatively small contigs, and, until recently, no complete Asgard archaea genome is yet available. Large scale phylogenetic analyses suggest that Asgard archaea represent the closest archaeal relatives of eukaryotes. In addition, members of this superphylum encode proteins that were originally thought to be specific to eukaryotes, including components of the trafficking machinery, cytoskeleton and endosomal sorting complexes required for transport (ESCRT). Yet, these findings have been questioned on the basis that the genome sequences that underpin them were assembled from metagenomic data, and could have been subjected to contamination and other assembly artefacts. Even though several lines of evidence indicate that the previously reported findings were not affected by these issues, having access to high-quality and preferentially fully closed Asgard archaea genomes is needed to definitively close this debate. Current long-read sequencing technologies such as Oxford Nanopore allow the generation of long reads in a high-throughput manner making them suitable for their use in metagenomics. Although the use of long reads is still limited in this field, recent analyses have shown that it is feasible to obtain complete or near-complete genomes of abundant members of mock communities and metagenomes of various level of complexity. Here, we show that long read metagenomics can be successfully applied to obtain near-complete genomes of low-abundant members of complex communities from sediment samples. We were able to reconstruct six MAGs from different Lokiarchaeota lineages that show high completeness and low fragmentation, with one of them being a near-complete genome only consisting of three contigs. Our analyses confirm that the eukaryote-like features previously associated with Lokiarchaeota are not the result of contamination or assembly artefacts, and can indeed be found in the newly reconstructed genomes.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Peter Edge ◽  
Vikas Bansal

Abstract Whole-genome sequencing using sequencing technologies such as Illumina enables the accurate detection of small-scale variants but provides limited information about haplotypes and variants in repetitive regions of the human genome. Single-molecule sequencing (SMS) technologies such as Pacific Biosciences and Oxford Nanopore generate long reads that can potentially address the limitations of short-read sequencing. However, the high error rate of SMS reads makes it challenging to detect small-scale variants in diploid genomes. We introduce a variant calling method, Longshot, which leverages the haplotype information present in SMS reads to accurately detect and phase single-nucleotide variants (SNVs) in diploid genomes. We demonstrate that Longshot achieves very high accuracy for SNV detection using whole-genome Pacific Biosciences data, outperforms existing variant calling methods, and enables variant detection in duplicated regions of the genome that cannot be mapped using short reads.


Sign in / Sign up

Export Citation Format

Share Document