scholarly journals Fra1 is required for TGFβ1 induced collective invasion

2020 ◽  
Author(s):  
Sharon Camacho ◽  
Apsra Nasir ◽  
Raneen Rahhal ◽  
Maia Dominguez ◽  
Gray W. Pearson

ABSTRACTCells that lead collective invasion can have distinct traits and regulatory programs compared to the cells that follow them. Notably, a specific type of epithelial-to-mesenchymal transition (EMT) program we term a “trailblazer EMT” endows cells with the ability to lead collective invasion and promote the opportunistic invasion of intrinsically less invasive siblings. Here, we sought to define the regulatory programs that are responsible for inducing a trailblazer EMT in a genetically engineered mouse (GEM) model of breast cancer. Analysis of fresh tumor explants, cultured organoids and cell lines revealed that the trailblazer EMT was controlled by TGFβ pathway activity that induced a hybrid EMT state characterized by cells expressing E-cadherin and Vimentin. Notably, the trailblazer EMT was active in cells lacking keratin 14 expression and evidence of trailblazer EMT activation was detected in collectively invading cells in primary tumors. The trailblazer EMT program required expression of the transcription factor Fra1, which was regulated by the parallel autocrine activation of the epidermal growth factor receptor (EGFR) and extracellular signal regulated kinases (ERK) 1 and 2. Together, these results reveal that the activity of parallel TGFβ and EGFR pathways confers cells with the ability to lead collective invasion through the induction of a trailblazer EMT.

Tumor Biology ◽  
2017 ◽  
Vol 39 (3) ◽  
pp. 101042831769502 ◽  
Author(s):  
Krisha Desai ◽  
Radhika Aiyappa ◽  
Jyothi S Prabhu ◽  
Madhumathy G Nair ◽  
Patrick Varun Lawrence ◽  
...  

Despite an overall good prognosis, a significant proportion of patients with hormone receptor positive human epidermal growth factor receptor 2 negative breast cancers develop distant metastases. The metastatic potential of epithelial cells is known to be regulated by tumor–stromal interaction and mediated by epithelial-to-mesenchymal transition. Hormone receptor positive human epidermal growth factor receptor 2 negative tumors were used to estimate markers of epithelial-to-mesenchymal transition, and the luminal breast cancer cell line MCF-7 was used to examine the interactions between integrins and growth factor receptors in causation of epithelial-to-mesenchymal transition. A total of 140 primary tumors were sub-divided into groups enriched for the markers of epithelial-to-mesenchymal transition (snail family transcriptional repressor 2 and integrin β6) versus those with low levels. Within the epithelial-to-mesenchymal transition+ tumors, there was a positive correlation between the transcripts of integrin β6 and growth factor receptors—human epidermal growth factor receptor 2 and epidermal growth factor receptor. In tumors enriched for epithelial-to-mesenchymal transition markers, patients with tumors with the highest quartile of growth factor receptor transcripts had a shorter disease-free survival compared to patients with low growth factor receptor expression by Kaplan–Meier analysis (log rank, p = 0.03). Epithelial-to-mesenchymal transition was induced in MCF-7 cells by treatment with transforming growth factor beta 1 and confirmed by upregulation of SNAI1 and SNAI2 transcripts, increase of vimentin and integrin β6 protein, and repression of E-cadherin. Treatment of these cells with the dual-specificity tyrosine-kinase inhibitor lapatinib led to downregulation of epithelial-to-mesenchymal transition as indicated by lower levels of SNAI1 and SNAI2 transcripts, integrin αvβ6, and matrix metalloproteinase 9 protein. The results suggest that synergistic interactions between growth factor receptors and integrin β6 could mediate epithelial-to-mesenchymal transition and migration in a subset of luminal breast cancers and lapatinib might be effective in disrupting this interaction.


Sign in / Sign up

Export Citation Format

Share Document