scholarly journals Hippocampal Egr1-dependent neuronal ensembles negatively regulate motor learning

2020 ◽  
Author(s):  
Veronica Brito ◽  
Enrica Montalban ◽  
Anika Pupak ◽  
Mercè Masana ◽  
Silvia Ginés ◽  
...  

AbstractMotor skills learning is classically associated with brain regions including cerebral and cerebellar cortices and basal ganglia. Less is known about the role of the hippocampus in the acquisition and storage of motor skills. Here we show that mice receiving a long-term training in the accelerating rotarod display marked transcriptional changes in the striatum and hippocampus when compared with short-term trained mice. We identify Egr1 as a modulator of gene expression in the hippocampus during motor learning. Using mice in which neural ensembles are permanently labeled in an Egr1 activity-dependent fashion we identify ensembles of Egr1-expressing pyramidal neurons in CA1 activated in short- and long-term trained mice in the rotarod task. When Egr1 is downregulated or these neuronal ensembles are depleted, motor learning is improved whereas their chemogenetic stimulation impairs motor learning performance. Thus, Egr1 organizes specific CA1 neuronal ensembles during the accelerating rotarod task that limit motor learning.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Jesús Pérez-Ortega ◽  
Tzitzitlini Alejandre-García ◽  
Rafael Yuste

Neuronal ensembles, coactive groups of neurons found in spontaneous and evoked cortical activity, are causally related to memories and perception, but it still unknown how stable or flexible they are over time. We used two-photon multiplane calcium imaging to track over weeks the activity of the same pyramidal neurons in layer 2/3 of the visual cortex from awake mice and recorded their spontaneous and visually evoked responses. Less than half of the neurons were commonly active across any two imaging sessions. These 'common neurons' formed stable ensembles lasting weeks, but some ensembles were also transient and appeared only in one single session. Stable ensembles preserved ~68 % of their neurons up to 46 days, our longest imaged period, and these 'core' cells had stronger functional connectivity. Our results demonstrate that neuronal ensembles can last for weeks and could, in principle, serve as a substrate for long-lasting representation of perceptual states or memories.


2021 ◽  
Author(s):  
Flávio Afonso Gonçalves Mourão ◽  
Leonardo de Oliveira Guarnieri ◽  
Paulo Aparecido Amaral Júnior ◽  
Vinícius Rezende Carvalho ◽  
Eduardo Mazoni Andrade Marçal Mendes ◽  
...  

ABSTRACTElectrophysiological recordings lead amongst the techniques that aim to investigate the dynamics of neural activity sampled from large neural ensembles. However, the financial costs associated with the state-of-the-art technology used to manufacture probes and multi-channel recording systems make these experiments virtually inaccessible to small laboratories, especially if located in developing countries. Here, we describe a new method for implanting several tungsten electrode arrays, widely distributed over the brain. Moreover, we designed a headstage system, using the Intan® RHD2000 chipset, associated with a connector (replacing the expensive commercial Omnetics connector), that allows the usage of disposable and cheap cranial implants. Our results showed high-quality multichannel recording in freely moving animals (detecting local field, evoked responses and unit activities) and robust mechanical connections ensuring long-term continuous recordings. Our project represents an open source and inexpensive alternative to develop customized extracellular records from multiple brain regions.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jereme C. Wingert ◽  
Barbara A. Sorg

Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround specific neurons in the brain and spinal cord, appear during critical periods of development, and restrict plasticity during adulthood. Removal of PNNs can reinstate juvenile-like plasticity or, in cases of PNN removal during early developmental stages, PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin (PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These inhibitory interneurons profoundly inhibit the network of surrounding neurons via their elaborate contacts with local pyramidal neurons, and they are key contributors to gamma oscillations generated across several brain regions. Among other functions, these gamma oscillations regulate plasticity associated with learning, decision making, attention, cognitive flexibility, and working memory. The detailed mechanisms by which PNN removal increases plasticity are only beginning to be understood. Here, we review the impact of PNN removal on several electrophysiological features of their underlying PV interneurons and nearby pyramidal neurons, including changes in intrinsic and synaptic membrane properties, brain oscillations, and how these changes may alter the integration of memory-related information. Additionally, we review how PNN removal affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context of the role of PV interneurons in circuit function and how PNN removal alters this function.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Clemens Jaitner ◽  
Chethan Reddy ◽  
Andreas Abentung ◽  
Nigel Whittle ◽  
Dietmar Rieder ◽  
...  

SATB2 is a risk locus for schizophrenia and encodes a DNA-binding protein that regulates higher-order chromatin configuration. In the adult brain Satb2 is almost exclusively expressed in pyramidal neurons of two brain regions important for memory formation, the cerebral cortex and the CA1-hippocampal field. Here we show that Satb2 is required for key hippocampal functions since deletion of Satb2 from the adult mouse forebrain prevents the stabilization of synaptic long-term potentiation and markedly impairs long-term fear and object discrimination memory. At the molecular level, we find that synaptic activity and BDNF up-regulate Satb2, which itself binds to the promoters of coding and non-coding genes. Satb2 controls the hippocampal levels of a large cohort of miRNAs, many of which are implicated in synaptic plasticity and memory formation. Together, our findings demonstrate that Satb2 is critically involved in long-term plasticity processes in the adult forebrain that underlie the consolidation and stabilization of context-linked memory.


2021 ◽  
Author(s):  
Eddy Albarran ◽  
Aram Raissi ◽  
Omar Jáidar ◽  
Carla J. Shatz ◽  
Jun B. Ding

SUMMARYDendritic spine dynamics of Layer 5 Pyramidal neurons (L5PNs) are thought to be physical substrates for motor learning and memory of motor skills and altered spine dynamics are frequently correlated with poor motor performance. Here we describe an exception to this rule by studying mice lacking Paired immunoglobulin receptor B (PirB−/−). Using chronic two-photon imaging of primary motor cortex (M1) of PirB−/−;Thy1-YFP-H mice, we found a significant increase in the survival of spines on apical dendritic tufts of L5PNs, as well as increased spine formation rates and spine density. Surprisingly and contrary to expectations, adult PirB−/− mice learn a skilled reaching task more rapidly compared to wild type (WT) littermate controls. Conditional excision of PirB from forebrain pyramidal neurons in adult mice replicated these results. Furthermore, chronic imaging of L5PN dendrites throughout the learning period revealed that the stabilization of learning-induced newly formed spines is significantly elevated in PirB−/− mice. The degree of survival of newly formed spines in M1 yielded the strongest correlation with task performance, suggesting that this increased spine stability is advantageous and can translate into enhanced acquisition and maintenance of motor skills. Notably, inhibiting PirB function acutely in M1 of adult WT mice throughout training increases the survival of spines formed during early training and enhances motor learning. These results suggest that increasing the stability of newly formed spines is sufficient to improve long-lasting learning and motor performance and demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.


1975 ◽  
Vol 40 (1) ◽  
pp. 92-105 ◽  
Author(s):  
Lawrence D. Shriberg

A response evocation program, some principles underlying its development and administration, and a review of some clinical experiences with the program are presented. Sixty-five children with developmental articulation errors of the /ɝ/ phoneme were administered the program by one of 19 clinicians. Approximately 70% of program administrations resulted in a child emitting a good /ɝ/ within six minutes. Approximately 10% of children who were given additional training on program step failures emitted good /ɝ/'s in subsequent sessions. These preliminary observations are discussed in relation to the role of task analysis and motor skills learning principles in response evocation, clinician influences in program outcomes, and professional issues in service delivery to children with developmental articulation errors.


1993 ◽  
Vol 38 (12) ◽  
pp. 1336-1336
Author(s):  
Terri Gullickson ◽  
Pamela Ramser

Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 287
Author(s):  
Maria Isabella Donegani ◽  
Alberto Miceli ◽  
Matteo Pardini ◽  
Matteo Bauckneht ◽  
Silvia Chiola ◽  
...  

We aimed to evaluate the brain hypometabolic signature of persistent isolated olfactory dysfunction after SARS-CoV-2 infection. Twenty-two patients underwent whole-body [18F]-FDG PET, including a dedicated brain acquisition at our institution between May and December 2020 following their recovery after SARS-Cov2 infection. Fourteen of these patients presented isolated persistent hyposmia (smell diskettes olfaction test was used). A voxel-wise analysis (using Statistical Parametric Mapping software version 8 (SPM8)) was performed to identify brain regions of relative hypometabolism in patients with hyposmia with respect to controls. Structural connectivity of these regions was assessed (BCB toolkit). Relative hypometabolism was demonstrated in bilateral parahippocampal and fusiform gyri and in left insula in patients with respect to controls. Structural connectivity maps highlighted the involvement of bilateral longitudinal fasciculi. This study provides evidence of cortical hypometabolism in patients with isolated persistent hyposmia after SARS-Cov2 infection. [18F]-FDG PET may play a role in the identification of long-term brain functional sequelae of COVID-19.


Sign in / Sign up

Export Citation Format

Share Document