scholarly journals Positive effects of crop diversity on productivity driven by changes in soil microbial composition

2020 ◽  
Author(s):  
Laura Stefan ◽  
Martin Hartmann ◽  
Nadine Engbersen ◽  
Johan Six ◽  
Christian Schöb

SummaryIntensive agriculture has major negative impacts on ecosystem diversity and functioning, including that of soils. The associated reduction of soil biodiversity and essential soil functions, such as nutrient cycling, can restrict plant growth and crop yield. By increasing plant diversity in agricultural systems, intercropping could be a promising way to foster soil microbial diversity and functioning. However, plant–microbe interactions and the extent to which they influence crop yield under field conditions are still poorly understood. In this study, we performed an extensive intercropping experiment using eight crop species and 40 different crop mixtures to investigate how crop diversity affects soil microbial diversity and functions, and whether these changes subsequently affect crop yield. Experiments were carried out in mesocosms under natural conditions in Switzerland and in Spain, two countries with drastically different soils and climate, and our crop communities included either one, two or four species. We sampled and sequenced soil microbial DNA to assess soil microbial diversity, and measured soil basal respiration as a proxy for soil activity. Results indicate that in Switzerland, increasing crop diversity led to shifts in soil microbial community composition, and in particular to an increase of several plant-growth promoting microbes, such as members of the bacterial phylum Actinobacteria. These shifts in community composition subsequently led to a 15 and 35% increase in crop yield in 2 and 4-species mixtures, respectively. This suggests that the positive effects of crop diversity on crop productivity can partially be explained by changes in soil microbial composition. However, the effects of crop diversity on soil microbes were relatively small compared to the effects of abiotic factors such as fertilization (3 times larger) or soil moisture (3 times larger). Furthermore, these processes were context-dependent: in Spain, where soil resources were limited, soil microbial communities did not respond to crop diversity, and their effect on crop yield was less strong. This research highlights the potential beneficial role of soil microbial communities in intercropping systems, while also reflecting on the relative importance of crop diversity compared to abiotic drivers of microbiomes, thereby emphasizing the context-dependence of crop–microbe relationships.

2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Stefan ◽  
Martin Hartmann ◽  
Nadine Engbersen ◽  
Johan Six ◽  
Christian Schöb

Intensive agriculture has major negative impacts on ecosystem diversity and functioning, including that of soils. The associated reduction of soil biodiversity and essential soil functions, such as nutrient cycling, can restrict plant growth and crop yield. By increasing plant diversity in agricultural systems, intercropping could be a promising way to foster soil microbial diversity and functioning. However, plant–microbe interactions and the extent to which they influence crop yield under field conditions are still poorly understood. In this study, we performed an extensive intercropping experiment using eight crop species and 40 different crop mixtures to investigate how crop diversity affects soil microbial diversity and activity, and whether these changes subsequently affect crop yield. Experiments were carried out in mesocosms under natural conditions in Switzerland and in Spain, two countries with drastically different soils and climate, and our crop communities included either one, two or four species. We sampled and sequenced soil microbial DNA to assess soil microbial diversity, and measured soil basal respiration as a proxy for soil activity. Results indicate that in Switzerland, increasing crop diversity led to shifts in soil microbial community composition, and in particular to an increase of several plant-growth promoting microbes, such as members of the bacterial phylum Actinobacteria. These shifts in community composition subsequently led to a 15 and 35% increase in crop yield in 2 and 4-species mixtures, respectively. This suggests that the positive effects of crop diversity on crop productivity can partially be explained by changes in soil microbial composition. However, the effects of crop diversity on soil microbes were relatively small compared to the effects of abiotic factors such as fertilization (three times larger) or soil moisture (three times larger). Furthermore, these processes were context-dependent: in Spain, where resources were limited, soil microbial communities did not respond to crop diversity, and their effect on crop yield was less strong. This research highlights the potential beneficial role of soil microbial communities in intercropping systems, while also reflecting on the relative importance of crop diversity compared to abiotic drivers of microbiomes and emphasizing the context-dependence of crop–microbe relationships.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2459 ◽  
Author(s):  
Silvia Pajares ◽  
Ana E. Escalante ◽  
Ana M. Noguez ◽  
Felipe García-Oliva ◽  
Celeste Martínez-Piedragil ◽  
...  

Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO${}_{3}^{-}$, Cl−, SO${}_{4}^{2-}$) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.


2021 ◽  
Vol 9 (7) ◽  
pp. 1400
Author(s):  
Marta Bertola ◽  
Andrea Ferrarini ◽  
Giovanna Visioli

Soil is one of the key elements for supporting life on Earth. It delivers multiple ecosystem services, which are provided by soil processes and functions performed by soil biodiversity. In particular, soil microbiome is one of the fundamental components in the sustainment of plant biomass production and plant health. Both targeted and untargeted management of soil microbial communities appear to be promising in the sustainable improvement of food crop yield, its nutritional quality and safety. –Omics approaches, which allow the assessment of microbial phylogenetic diversity and functional information, have increasingly been used in recent years to study changes in soil microbial diversity caused by agronomic practices and environmental factors. The application of these high-throughput technologies to the study of soil microbial diversity, plant health and the quality of derived raw materials will help strengthen the link between soil well-being, food quality, food safety and human health.


2021 ◽  
Author(s):  
Felipe Bastida ◽  
David J. Eldridge ◽  
Carlos García ◽  
G. Kenny Png ◽  
Richard D. Bardgett ◽  
...  

AbstractThe relationship between biodiversity and biomass has been a long standing debate in ecology. Soil biodiversity and biomass are essential drivers of ecosystem functions. However, unlike plant communities, little is known about how the diversity and biomass of soil microbial communities are interlinked across globally distributed biomes, and how variations in this relationship influence ecosystem function. To fill this knowledge gap, we conducted a field survey across global biomes, with contrasting vegetation and climate types. We show that soil carbon (C) content is associated to the microbial diversity–biomass relationship and ratio in soils across global biomes. This ratio provides an integrative index to identify those locations on Earth wherein diversity is much higher compared with biomass and vice versa. The soil microbial diversity-to-biomass ratio peaks in arid environments with low C content, and is very low in C-rich cold environments. Our study further advances that the reductions in soil C content associated with land use intensification and climate change could cause dramatic shifts in the microbial diversity-biomass ratio, with potential consequences for broad soil processes.


2020 ◽  
Vol 66 (4) ◽  
pp. 263-273
Author(s):  
Julien Saavedra-Lavoie ◽  
Anne de la Porte ◽  
Sarah Piché-Choquette ◽  
Claude Guertin ◽  
Philippe Constant

Trace gas uptake by microorganisms controls the oxidative capacity of the troposphere, but little is known about how this important function is affected by changes in soil microbial diversity. This article bridges that knowledge gap by examining the response of the microbial community-level physiological profiles (CLPPs), carbon dioxide (CO2) production, and molecular hydrogen (H2) and carbon monoxide (CO) oxidation activities to manipulation of microbial diversity in soil microcosms. Microbial diversity was manipulated by mixing nonsterile and sterile soil with and without the addition of antibiotics. Nonsterile soil without antibiotics was used as a reference. Species composition changed significantly in soil microcosms as a result of dilution and antibiotic treatments, but there was no difference in species richness, according to PCR amplicon sequencing of the bacterial 16S rRNA gene. The CLPP was 15% higher in all dilution and antibiotic treatments than in reference microcosms, but the dilution treatment had no effect on CO2 production. Soil microcosms with dilution treatments had 58%–98% less H2 oxidation and 54%–99% lower CO oxidation, relative to reference microcosms, but did not differ among the antibiotic treatments. These results indicate that H2 and CO oxidation activities respond to compositional changes of microbial community in soil.


2021 ◽  
Author(s):  
Liping Qiu ◽  
Qian Zhang ◽  
Hansong Zhu ◽  
Peter B. Reich ◽  
Samiran Banerjee ◽  
...  

AbstractWhile soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ai-Zi Tong ◽  
Wei Liu ◽  
Qiang Liu ◽  
Guang-Qing Xia ◽  
Jun-Yi Zhu

Abstract Background Continuous cropping of ginseng (Panax ginseng Meyer) cultivated in farmland for an extended period gives rise to soil-borne disease. The change in soil microbial composition is a major cause of soil-borne diseases and an obstacle to continuous cropping. The impact of cultivation modes and ages on the diversity and composition of the P. ginseng rhizosphere microbial community and technology suitable for cropping P. ginseng in farmland are still being explored. Methods Amplicon sequencing of bacterial 16S rRNA genes and fungal ITS regions were analyzed for microbial community composition and diversity. Results The obtained sequencing data were reasonable for estimating soil microbial diversity. We observed significant variations in richness, diversity, and relative abundances of microbial taxa between farmland, deforestation field, and different cultivation years. The bacterial communities of LCK (forest soil where P. ginseng was not grown) had a much higher richness and diversity than those in NCK (farmland soil where P. ginseng was not grown). The increase in cultivation years of P. ginseng in farmland and deforestation field significantly changed the diversity of soil microbial communities. In addition, the accumulation of P. ginseng soil-borne pathogens (Monographella cucumerina, Ilyonectria mors-panacis, I. robusta, Fusarium solani, and Nectria ramulariae) varied with the cropping age of P. ginseng. Conclusion Soil microbial diversity and function were significantly poorer in farmland than in the deforestation field and were affected by P. ginseng planting years. The abundance of common soil-borne pathogens of P. ginseng increased with the cultivation age and led to an imbalance in the microbial community.


2020 ◽  
Author(s):  
Cameron Wagg ◽  
Yann Hautier ◽  
Sarah Pellkofer ◽  
Samiran Banerjee ◽  
Bernhard Schmid ◽  
...  

AbstractTheoretical and empirical advances have revealed the importance of biodiversity for stabilizing ecosystem functions through time. Yet despite the global degradation of soils, how the loss of soil microbial diversity can de-stabilizes ecosystem functioning is unknown. Here we experimentally quantified the contribution diversity and the temporal dynamics in the composition of soil microbial communities to the temporal stability of four key ecosystem functions related to nutrient and carbon cycling. Soil microbial diversity loss reduced the temporal stability of all ecosystem functions and was particularly strong when over 50% of microbial taxa were lost. The stabilizing effect of soil biodiversity was linked to asynchrony among microbial taxa whereby different soil fungi and bacteria were associated with different ecosystem functions at different times. Our results emphasize the need to conserve soil biodiversity in order to ensure the reliable provisioning of multiple ecosystems functions that soils provide to society.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan Wang ◽  
Yujie Jin ◽  
Ping Han ◽  
Jianjun Hao ◽  
Hongyu Pan ◽  
...  

Soil treatment with disinfectants has been used for controlling soilborne phytopathogens. Besides suppressing specific pathogens, how these disinfectants impact soil health, especially soil microbial communities, is yet to be systemically determined. The objectives of this study were to examine the effects of three representative disinfectants, including the dazomet fumigant, fenaminosulf fungicide, and kasugamycin antibiotic on chemical properties, enzymatic activities, and microbial communities in soil for cucumber cultivation. Results showed that 14 days after soil treatment with these chemicals, residual content of dazomet and kasugamycin quickly declined in soil and were undetectable, while fenaminosulf residues were found at 0.48 ± 0.01 mg/kg. Total nitrogen and total carbon increased in soil after dazomet treatment. Urease and sucrase activities were significantly restrained after disinfectant application. The disinfectants did not significantly change the taxon of predominant bacteria and fungi but altered the relative abundance and diversity of soil microbiome, as well as microbial interspecific relationships. Moreover, cucumber cultivation enhanced the overall soil microbial diversity and enzymatic activities, which diminished the difference of soil microbiome among four treatments. The difference in soil microbial diversity among the four treatments became smaller after planting cucumber. Thus, soil microbial communities were affected by soil disinfectants and gradually recovered by cucumber application.


Sign in / Sign up

Export Citation Format

Share Document