scholarly journals Mapping the Cellular Origin and Early Evolution of Leukemia in Down Syndrome

2020 ◽  
Author(s):  
Elvin Wagenblast ◽  
Joana Araújo ◽  
Olga I. Gan ◽  
Sarah K. Cutting ◽  
Alex Murison ◽  
...  

AbstractChildren with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. As Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal liver hematopoietic cells and xenotransplantation. GATA1 mutations caused transient preleukemia only when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 miRNAs triggers predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT cells mediated the propagation of preleukemia and leukemia, and functional KIT inhibition targeted preleukemic stem cells, blocking progression to leukemia.

Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. eabf6202 ◽  
Author(s):  
Elvin Wagenblast ◽  
Joana Araújo ◽  
Olga I. Gan ◽  
Sarah K. Cutting ◽  
Alex Murison ◽  
...  

Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 (GATA1) mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia. By contrast, progression to leukemia was independent of trisomy 21 and originated in various stem and progenitor cells through additional mutations in cohesin genes. CD117+/KIT proto-oncogene (KIT) cells mediated the propagation of preleukemia and leukemia, and KIT inhibition targeted preleukemic stem cells.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3891-3891
Author(s):  
Elvin Wagenblast ◽  
Gabriela Krivdova ◽  
Lorien Shakib ◽  
Maria Azkanaz ◽  
Olga I. Gan ◽  
...  

Abstract Children with Down syndrome, also known as trisomy 21, have a significantly increased risk of childhood acute leukemia in the first few years after birth. The acute leukemia phase is preceded with a transient pre-leukemia phase in newborns, which is characterized by a clonal proliferation of immature megakaryocytes carrying somatic mutations in the GATA binding protein 1 (GATA1). These acquired GATA1 mutations lead to the expression of the GATA1 short isoform and prevent the expression of the GATA1 long isoform. The pre-leukemia undergoes spontaneous remission within the first few months after birth. In 20% - 30% of the cases, children progress to acute myeloid leukemia (AML) after remission, in which the pre-leukemic clone acquires additional mutations, such as in genes of the cohesin complex. It is hypothesized that this represents a multi-step process of leukemogenesis with three distinct genetic events: trisomy 21, GATA1 mutation and additional tertiary mutations. Here, we wanted to model the initiation and evolution of Down syndrome associated pre-leukemia and AML by employing CRISPR/Cas9. For this, we developed a CRISPR system that allows the precise manipulation of human hematopoietic stem and progenitor cells using electroporation of Cas9 protein and chemically synthesized gRNAs. We utilized human cord blood and fetal liver as a source of hematopoietic stem and progenitor cells (HSPCs). We were able to force the re-assignment of GATA1 isoforms to either the short or long isoform using CRISPR/Cas9 in purified hematopoietic stem cells (HSCs), multi-potent progenitors (MPPs), common myeloid progenitor (CMPs) and megakaryocyte/erythrocyte progenitors (MEPs). For each of these populations, we assayed their differentiation potential in single cell in vitro assays. In short, after electroporation and CRISPR/Cas9 mediated re-assignment to either the GATA1 short or long isoform, single cells were deposited onto MS5 stromal cells and were grown for 16-17 days in erythro-myeloid differentiation media. Individual colonies were analyzed by flow cytometry for their differentiation potential and genotyped to confirm CRISPR/Cas9 mediated GATA1 short or long isoform re-assignment. Overall, we were able to observe cell type specific and isoform specific effects on differentiation. For example, re-assignment to the GATA1 short isoform restricted erythroid differentiation and promoted megakaryocytic output in HSCs and MPPs. This effect was both seen when cord blood or fetal liver was used as the source of HSPCs. To confirm the role of the short isoform of GATA1, we transplanted HSCs with GATA1 short in a clonal fashion into immunocompromised mice and after 20 weeks observed grafts with high megakaryocytic output compared to control HSCs. Similarly, GlyA+ erythroid output was significantly decreased compared to transplanted control HSCs. In summary, this CRISPR/Cas9 system allows us to investigate the differentiation potential of single cells that are restricted to the endogenous expression of either the short or long isoform of GATA1. Future work will include the utilization of trisomy 21 HSCPs and the introduction of tertiary mutations, such as loss of function of STAG2, to potentially progress the model to an acute leukemia phase. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1186-1186
Author(s):  
Karlijn Hasaart ◽  
Freek Manders ◽  
Susana Chuva de Sousa Lopes ◽  
Ruben Van Boxtel

Children with Down syndrome are predisposed to leukemia during the first years of their life. 5-10% of newborns with Down syndrome are born with transient myeloproliferative disorder (TMD), which often spontaneously disappears. The majority of these patients achieves complete remission. However, in 20-30% of all TMD patients the disease progress in acute megakaryoblastic leukemia. In addition, they have a 20 fold higher risk of developing B-lymphocyte acute leukemia (B-ALL). Leukemic development in Down syndrome is initiated during fetal development. However, it is unclear why fetuses with a trisomy of chromosome 21 have an increased risk of developing leukemia. Previously, we have developed a method to study somatic mutations in single cells using clonal cultures. Here, we applied this method to human fetal hematopoietic stem and progenitor cells (HSPCs) from liver and bone marrow of Down syndrome human fetuses and control fetuses with two copies of chromosome 21 (D21). In addition, we characterized somatic mutation accumulation in not affected small intestine stem cells. Subsequently, we performed in depth mutational analyses to characterize active processes using mutational signatures in fetal stem cells, which potentially can drive leukemic development during early life. Recently, we have shown that that healthy adult HSPCs gradually accumulate somatic mutations in a linear fashion with an annual mutation rate of 14.2 base substitutions per year. Whereas the somatic mutation rate is significantly higher during fetal development. Subsequently, in Down syndrome fetuses the overall somatic mutation rate of fetal stem cells is significantly increased compared to D21 fetal stem cells (P-value: 0,024). We performed phylogenetic analysis to study relatedness of the cells and observed an higher somatic mutation rate in the first cell divisions. This elevated mutation rate can be explained by increased contribution of mutational process signature 1 and 5, which are already present in fetal stem cells. Therefore, Down syndrome fetal stem cells show enhanced activity or increased sensitivity to mutational processes that are normally active during development. The same mutational signatures are present in TMD blast cells, indicating that these processes can cause cancer driver mutations and subsequently contribute to leukemic development. Interestingly, some Down syndrome fetal stem cells showed very high mutation numbers that could partly be attributed to mutational signature 18, which likely reflect oxidative-stress induced mutagenesis. These findings, show increased mutagenesis in Down syndrome during fetal development in hematopoietic stem cells and small intestine stem cells. This increased mutagenesis can potentially explain why children with Down syndrome have an increased risk of developing leukemia in early life. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1625-1634 ◽  
Author(s):  
Margret L. Casal ◽  
John H. Wolfe

Mice with the lysosomal storage disease mucopolysaccharidosis (MPS) VII, caused by a deficiency of β-glucuronidase (GUSB), have signs of disease present at birth. Bone marrow transplantation (BMT) or retroviral vector–mediated gene transfer into hematopoietic stem cells can partially correct the disease in adult mice, and BMT performed at birth results in a better clinical outcome. Thus, treatment in utero may result in further improvement. However, this must be done without cyto-ablation, and the donor cells do not have a competitive repopulating advantage over host cells. Transplantation in utero of either syngeneic fetal liver hematopoietic stem cells marked with a retroviral vector, or allogeneic donor cells that constitutively express high levels of human GUSB from a transgene, resulted in only about 0.1% engraftment in the adult. Immuno-affinity enrichment of stem and progenitor cells of 5- to 10-fold resulted in significantly higher GUSB activities at 2 months of age, but by 6 months engraftment was about 0.1%. Attempts to further increase the number of stem and progenitor cells were deleterious to the recipients. Nevertheless, GUSB expressed during the first 2 months of life in MPS VII fetuses could delay the onset of overt signs of disease. This suggests that the expression of some normal enzyme activity beginning in fetal life may offer the possibility of slowing the progression of the disease until more definitive postnatal transplantation or gene transfer to stem cells could be accomplished.


Blood ◽  
2008 ◽  
Vol 111 (2) ◽  
pp. 767-775 ◽  
Author(s):  
Gina Kirsammer ◽  
Sarah Jilani ◽  
Hui Liu ◽  
Elizabeth Davis ◽  
Sandeep Gurbuxani ◽  
...  

Children with Down syndrome (DS) display macrocytosis, thrombocytosis, and a 500-fold increased risk of developing megakaryocytic leukemia; however, the specific effects of trisomy 21 on hematopoiesis remain poorly defined. To study this question, we analyzed blood cell development in the Ts65Dn mouse model of DS. Ts65Dn mice are trisomic for 104 orthologs of Hsa21 genes and are the most widely used mouse model for DS. We discovered that Ts65Dn mice display persistent macrocytosis and develop a myeloproliferative disease (MPD) characterized by profound thrombocytosis, megakaryocyte hyperplasia, dysplastic megakaryocyte morphology, and myelofibrosis. In addition, these animals bear distorted hematopoietic stem and myeloid progenitor cell compartments compared with euploid control littermates. Of the 104 trisomic genes in Ts65Dn mice, Aml1/Runx1 attracts considerable attention as a candidate oncogene in DS–acute megakaryoblastic leukemia (DS-AMKL). To determine whether trisomy for Aml1/Runx1 is essential for MPD, we restored disomy at the Aml1/Runx1 locus in the Ts65Dn strain. Surprisingly, trisomy for Aml1/Runx1 is not required for megakaryocyte hyperplasia and myelofibrosis, suggesting that trisomy for one or more of the remaining genes can promote this disease. Our studies demonstrate the potential of DS mouse models to improve our understanding of chromosome 21 gene dosage effects in human hematologic malignancies.


2020 ◽  
Vol 21 (24) ◽  
pp. 9346
Author(s):  
Toshiyuki Yamane

Primitive erythrocytes are the first hematopoietic cells observed during ontogeny and are produced specifically in the yolk sac. Primitive erythrocytes express distinct hemoglobins compared with adult erythrocytes and circulate in the blood in the nucleated form. Hematopoietic stem cells produce adult-type (so-called definitive) erythrocytes. However, hematopoietic stem cells do not appear until the late embryonic/early fetal stage. Recent studies have shown that diverse types of hematopoietic progenitors are present in the yolk sac as well as primitive erythroblasts. Multipotent hematopoietic progenitors that arose in the yolk sac before hematopoietic stem cells emerged likely fill the gap between primitive erythropoiesis and hematopoietic stem-cell-originated definitive erythropoiesis and hematopoiesis. In this review, we discuss the cellular origin of primitive erythropoiesis in the yolk sac and definitive hematopoiesis in the fetal liver. We also describe mechanisms for developmental switches that occur during embryonic and fetal erythropoiesis and hematopoiesis, particularly focusing on recent studies performed in mice.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4310-4310
Author(s):  
Lena Stachorski ◽  
Dirk Heckl ◽  
Veera Raghavan Thangapandi ◽  
Aliaksandra Maroz ◽  
Dirk Reinhardt ◽  
...  

Abstract Children with trisomy 21 (Down syndrome, DS) are predisposed to develop acute megakaryoblastic leukemia (DS-AMKL) as well as the antecedent transient leukemia (DS-TL). Mutations in the transcription factor GATA1 -leading to the exclusive expression of the shorter GATA1 isoform (GATA1s)- are present in nearly all children with DS-AMKL and DS-TL. GATA1s is both essential and sufficient to cause DS-TL in synergy with trisomy 21. To elucidate how the presence of an extra copy of chromosome 21 (hsa21) perturbs fetal hematopoiesis to provide a GATA1s-sensitive background during trisomy 21-associated leukemogenesis, we integrated an RNAi viability screening (512 shRNAmirs against 210 genes on hsa21) and a proteomics approach creating an hsa21 oncogenic network centered on GATA1s. shRNA-mediated knock-down of 42 genes conferred a profound selective growth disadvantage in DS-AMKL cell lines (CMK and CMY). A secondary functional validation screening confirmed 8 genes to specifically affect proliferation, cell viability, apoptosis or differentiation in GATA1s/trisomy-associated leukemia; whereas expression of 9 genes was also essential for proliferation and survival of erythroleukemia (K562) and non-DS-AMKL (M07) cell lines. Gain- and loss-of-function studies of 12 selected candidates (8 GATA1s/trisomy-specific oncogenes plus 4 global oncogenes) in CD34+ hematopoietic stem and progenitor cells (HSPCs) uncovered their regulatory function during megakaryopoiesis, erythropoiesis and myelopoiesis. Knockdown of four genes (USP25, BACH1, U2AF1 and C21orf33) inhibited megakaryocytic and erythroid in vitro differentiation, while enhancing myeloid differentiation. Inversely, ectopic expression of six genes (C21orf33, CHAF1B, IFNGR2, WDR4, RUNX1 or GABPA) resulted in a switch from erythroid to megakaryocytic differentiation. These 12 candidate genes acted synergistically to enhance the self-renewal efficiency of murine fetal liver cells in vitro. Pooled transduction of these genes increased the replating efficiency (more than 5 rounds) of fetal liver HSPCs whereas the colony-forming capacity was lost after second replating in the empty vector control. Further, 9 out of 12 candidate genes were overexpressed in DS-AMKL patient samples (n=23) compared to non-DS-AMKL (n=37; 1.3-fold to 2-fold) underscoring their relevance for the pathogenesis of DS-AMKL. Using an in vivo biotinylation approach to study the protein-protein interaction in DS-AMKL cells, we showed that bioGATA1 is associated with protein-complexes of 10 different hsa21-oncogenes, which are involved in splicing, deubiquitination and transcriptional regulation. Direct interactions with several of these factors are perturbed in N-terminal truncated GATA1s. Thus, we deciphered a complex interactive network on hsa21 around GATA1 positively regulating megakaryopoiesis. Deregulation of this network results in synergistic effects on hematopoietic differentiation, which can promote transformation of GATA1s-mutated fetal hematopoietic progenitor cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 881-881
Author(s):  
Natsumi Nishihama ◽  
Yasuhiro Ebihara ◽  
Feng Ma ◽  
Wenyu Yang ◽  
Daisuke Tomizawa ◽  
...  

Abstract Abstract 881 Trisomy 21, genetic hallmark of Down syndrome, is the most frequent human chromosomal abnormality. Infants and children with Down Syndrome (DS) are known to have some hematological disorders with an increased risk of developing leukemia. Ten to 20% of newborn with DS are diagnosed as neonatal preleukemic status, Transient Myeloproliferative Disorder (TMD), and approximately 30% of TMD patients are predisposed to acute megakaryoblastic leukemia (AMKL). Recently, acquired mutations in the N-terminal activation domain of the GATA1 gene, leading to expression of a shorter GATA1 isoform (GATA1s), have been reported in AMKL and TMD (Wechsler et al., 2002; Mundschau et al., 2003), but neither patients nor mice with germline mutations leading to expression of GATA1s developed AMKL and TMD in the absent of trisomy 21. These findings suggested that trisomy 21 itself directly contributes to the development of AMKL and TMD. However, the role of trisomy 21 in hematopoiesis, particularly in the human fetus remains poorly understood. To better understand the effects of trisomy 21 on hematopoiesis in embryonic stage and leukemogenesis, we employed human induced pluripotent stem cells (hiPSCs) derived from patients with DS (DS-hiPSCs). Six DS-hiPS and 5 hiPS cell lines (control) from healthy donors, which we used here, were all created from skin fibroblasts and reprogrammed by the defined 3 or 4 reprogramming factors (OCT3/4, KLF4, and SOX2, or c-MYC in addition to the 3 factors, respectively). We generated blood cells from DS-hiPSCs and controls with coculture system using murine aorta-gonad-mesonephros (AGM)-derived stromal cell line (Ma et al., 2009). The cells from hiPSCs were harvested at D11 or D12 of coculture and analyzed the presence of hematopoietic markers and the potentials of hematopoietic colony formation. In the experiments using hiPSCs reprogrammed by 3 factors, human CD34 expression in harvested cells from DS-hiPSCs or controls were detected 10.06 ± 4.35% and 3.04%, respectively. CD45 expression of CD34+ cells was small proportion in both DS-hiPSCs and controls. We next examined the hematopoietic colony formation. Both myeloid and erythroid colonies were detected. Number of colonies formed from DS-hiPSCs was 43.7±11.1 to 74.3±11.2 per an iPSC colony. It's approximately 2 to 3.5 folds numbers of control (p-value<0.05). Similar results were obtained in the experiments using hiPSCs reprogrammed by 4 factors. These results indicated that hiPSCs derived from patients with Down syndrome could differentiate into multiple hematopoietic cell lineages and the differentiation into hematopoietic lineage was promoted in DS patients. Further researches are under investigation to identify the responsible genes in trisomy 21 for acceleration of hematopoiesis with microarray analysis. Our study may contribute to understanding of the effects of trisomy 21 on hematopoiesis and effective use of patients derived hiPSCs in research and clinical application. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 23 ◽  
Author(s):  
K. A. L. Hasaart ◽  
E. J. M. Bertrums ◽  
F. Manders ◽  
B. F. Goemans ◽  
R. van Boxtel

Abstract Children show a higher incidence of leukaemia compared with young adolescents, yet their cells are less damaged because of their young age. Children with Down syndrome (DS) have an even higher risk of developing leukaemia during the first years of life. The presence of a constitutive trisomy of chromosome 21 (T21) in DS acts as a genetic driver for leukaemia development, however, additional oncogenic mutations are required. Therefore, T21 provides the opportunity to better understand leukaemogenesis in children. Here, we describe the increased risk of leukaemia in DS during childhood from a somatic evolutionary view. According to this idea, cancer is caused by a variation in inheritable phenotypes within cell populations that are subjected to selective forces within the tissue context. We propose a model in which the increased risk of leukaemia in DS children derives from higher rates of mutation accumulation, already present during fetal development, which is further enhanced by changes in selection dynamics within the fetal liver niche. This model could possibly be used to understand the rate-limiting steps of leukaemogenesis early in life.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4208-4208
Author(s):  
Julius Lukes ◽  
Petr Danek ◽  
Oriol Alejo ◽  
Eliska Potuckova ◽  
Ondrej Gahura ◽  
...  

Clonal proliferation of megakaryoblasts, called transient abnormal myelopoiesis (TAM), is a rare disease of newborns triggered by trisomy 21 (constitutional or somatic) together with acquired mutations of GATA1 resulting in the exclusive production of its short variant - GATA1s. No other TAM drivers have been described so far. We have diagnosed a unique TAM case with a typical clinical and laboratory manifestation but without the gain (or any other aberration) of chromosome 21. Thorough genomic profiling revealed 4 somatic mutations: GATA1 D65_C228del, JAK1 F636del, FN1 R2420C and SPIRE2 R471W. With respect to the generally accepted 2-hit theory, we hypothesized that this TAM arose from a collaboration of the atypical GATA1 mutation (not inducing GATA1s) with (at least) one of the other identified mutations. Unlike SPIRE2 and FN1 aberrations, various mutations of the JAK1 kinase have been previously described as leukemia drivers, suggesting JAK1 F636del as a top candidate for the second hit. Moreover, JAK1 mutations have been associated with the transformation of TAM into acute megakaryoblastic leukemia (Nikolaev et al., Blood, 2013). The aim of our project was to functionally characterize this novel JAK1 mutation. Phenylalanine 636 belongs to a phylogenetically conserved triad of amino acids suggested to control catalytic activity of JAK1 via mediating a switch between the supposedly active and inactive conformations (Toms et al., Nat Struct Mol Biol, 2013). Hence, F636 seems to be essential for JAK1 function. Surprisingly, homology modeling showed that loss of F636 is compatible with both functionally opposite conformations. Indeed, Western blot analysis of JAK/STAT signaling in transiently transformed HEK293T cells showed that catalytic activity is preserved in JAK1 F636del. However, we observed lower levels of auto- and STATs- phosphorylation compared to wild-type (wt) JAK1 suggesting decreased kinase activity of JAK1 F636del. Subsequently, we tested the oncogenic potential of JAK1 F636del in the Ba/F3 cell assay; unlike the known oncogenic JAK1 variant (JAK1 V658I), JAK1 F636del did not induce IL3-independent growth. To further assess phenotypic impact of F636del, we introduced JAK1 F636del into murine bone marrow and fetal liver hematopoietic stem and progenitor cells (HSPCs) using lentiviruses and performed colony forming assays. The number and morphology of colonies did not differ in JAK1 F636del compared to wt JAK1. Furthermore, we assessed the impact of JAK1 F636del in the context of mutated GATA1. We utilized the in-vitro model recently described by Labuhn et al. (Cancer Cell, 2019), in which the CRISPR/Cas9-mediated induction of Gata1s expression leads to the expansion and sustained proliferation of fetal liver HSPCs from embryonic day 13.5 ROSA26:Cas9-EGFPki/wt mice. Similar to wt JAK1, lentivirally introduced JAK1 F636del had no impact on the proliferation and maturation status of such Gata1-edited HPSCs irrespective of the timing of its introduction (simultaneously with Gata1 editing versus into fully established Gata1-edited culture) or of culturing conditions (fully cytokine-supplemented growth-supportive versus cytokine-depleted growth-restrictive medium). Altogether, we show that unlike known oncogenic variants, F636del identified in the first case of trisomy 21-independent TAM attenuates JAK1 kinase activity. The results of our phenotypic studies question the potential contribution of this mutation to TAM development. Interestingly, Labuhn et al. (2019) recently showed that non-activating JAK mutations occur at higher than random frequency in trisomy 21-dependent TAM. This tempts us to speculate that JAK1 mutations may still play a role in TAM. Yet, this role may significantly differ from that of known oncogenic mutations; it may result from attenuation/modulation instead of activation of downstream signaling and it may remain unrevealed utilizing the currently available sophisticated, yet still imperfect experimental models. Support: GAUK 86218, EHA Research Mobility Grant Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document