developmental switches
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 3)

Author(s):  
Penka Pavlova ◽  
Martijn van Zanten ◽  
Basten L. Snoek ◽  
Hans de Jong ◽  
Paul Fransz

Abstract Functional changes of cells upon developmental switches and in response to environmental cues are often reflected in nuclear phenotypes, showing distinctive chromatin states corresponding to transcriptional changes. Such characteristic nuclear shapes have been microscopically monitored and can be quantified after differential staining of euchromatin and heterochromatin domains. Here, we examined several nuclear parameters (size, DNA content, DNA density, chromatin compaction, relative heterochromatin fraction (RHF), and number of chromocenters) in relation to spatial distribution of genes and transposon elements (TEs), using standard 2D fluorescence microscopy. We provide nuclear profiles for different cell types and different accessions of Arabidopsis thaliana. A variable, yet significant, fraction of TEs was found outside chromocenters in all cell types, except for guard cells. The latter cell type features nuclei with the highest level of chromatin compaction, while their chromocenters seem to contain gene-rich regions. The highest number of parameter correlations was found in the accession Cvi, whereas Ler showed only few correlations. This may point at differences in phenotype robustness between accessions. The significantly high association of NOR chromocenters in accessions Ws and Cvi corresponds to their low RHF level.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 649
Author(s):  
Gautier Richard ◽  
Julie Jaquiéry ◽  
Gaël Le Trionnaire

Many insect species display a remarkable ability to produce discrete phenotypes in response to changes in environmental conditions. Such phenotypic plasticity is referred to as polyphenism. Seasonal, dispersal and caste polyphenisms correspond to the most-studied examples that are environmentally-induced in insects. Cues that induce such dramatic phenotypic changes are very diverse, ranging from seasonal cues, habitat quality changes or differential larval nutrition. Once these signals are perceived, they are transduced by the neuroendocrine system towards their target tissues where gene expression reprogramming underlying phenotypic changes occur. Epigenetic mechanisms are key regulators that allow for genome expression plasticity associated with such developmental switches. These mechanisms include DNA methylation, chromatin remodelling and histone post-transcriptional modifications (PTMs) as well as non-coding RNAs and have been studied to various extents in insect polyphenism. Differential patterns of DNA methylation between phenotypes are usually correlated with changes in gene expression and alternative splicing events, especially in the cases of dispersal and caste polyphenism. Combinatorial patterns of histone PTMs provide phenotype-specific epigenomic landscape associated with the expression of specific transcriptional programs, as revealed during caste determination in honeybees and ants. Alternative phenotypes are also usually associated with specific non-coding RNA profiles. This review will provide a summary of the current knowledge of the epigenetic changes associated with polyphenism in insects and highlights the potential for these mechanisms to be key regulators of developmental transitions triggered by environmental cues.


2021 ◽  
Vol 118 (8) ◽  
pp. e2021910118 ◽  
Author(s):  
Xueli Wang ◽  
Yike Ding ◽  
Xiangyang Lu ◽  
Danqian Geng ◽  
Shan Li ◽  
...  

Repeated blood feedings are required for adult female mosquitoes to maintain their gonadotrophic cycles, enabling them to be important pathogen carriers of human diseases. Elucidating the molecular mechanism underlying developmental switches between these mosquito gonadotrophic cycles will provide valuable insight into mosquito reproduction and could aid in the identification of targets to disrupt these cycles, thereby reducing disease transmission. We report here that the transcription factor ecdysone-induced protein 93 (E93), previously implicated in insect metamorphic transitions, plays a key role in determining the gonadotrophic cyclicity in adult females of the major arboviral vector Aedes aegypti. Expression of the E93 gene in mosquitoes is down-regulated by juvenile hormone (JH) and up-regulated by 20-hydroxyecdysone (20E). We find that E93 controls Hormone Receptor 3 (HR3), the transcription factor linked to the termination of reproductive cycles. Moreover, knockdown of E93 expression via RNAi impaired fat body autophagy, suggesting that E93 governs autophagy-induced termination of vitellogenesis. E93 RNAi silencing prior to the first gonadotrophic cycle affected normal progression of the second cycle. Finally, transcriptomic analysis showed a considerable E93-dependent decline in the expression of genes involved in translation and metabolism at the end of a reproductive cycle. In conclusion, our data demonstrate that E93 acts as a crucial factor in regulating reproductive cycle switches in adult female mosquitoes.


2021 ◽  
Vol 22 (3) ◽  
pp. 1033
Author(s):  
Abirami Rajavel ◽  
Selina Klees ◽  
Johanna-Sophie Schlüter ◽  
Hendrik Bertram ◽  
Kun Lu ◽  
...  

Transcription factors (TFs) and their complex interplay are essential for directing specific genetic programs, such as responses to environmental stresses, tissue development, or cell differentiation by regulating gene expression. Knowledge regarding TF–TF cooperations could be promising in gaining insight into the developmental switches between the cultivars of Brassica napus L., namely Zhongshuang11 (ZS11), a double-low accession with high-oil- content, and Zhongyou821 (ZY821), a double-high accession with low-oil-content. In this regard, we analysed a time series RNA-seq data set of seed tissue from both of the cultivars by mainly focusing on the monotonically expressed genes (MEGs). The consideration of the MEGs enables the capturing of multi-stage progression processes that are orchestrated by the cooperative TFs and, thus, facilitates the understanding of the molecular mechanisms determining seed oil content. Our findings show that TF families, such as NAC, MYB, DOF, GATA, and HD-ZIP are highly involved in the seed developmental process. Particularly, their preferential partner choices as well as changes in their gene expression profiles seem to be strongly associated with the differentiation of the oil content between the two cultivars. These findings are essential in enhancing our understanding of the genetic programs in both cultivars and developing novel hypotheses for further experimental studies.


2020 ◽  
Vol 21 (24) ◽  
pp. 9346
Author(s):  
Toshiyuki Yamane

Primitive erythrocytes are the first hematopoietic cells observed during ontogeny and are produced specifically in the yolk sac. Primitive erythrocytes express distinct hemoglobins compared with adult erythrocytes and circulate in the blood in the nucleated form. Hematopoietic stem cells produce adult-type (so-called definitive) erythrocytes. However, hematopoietic stem cells do not appear until the late embryonic/early fetal stage. Recent studies have shown that diverse types of hematopoietic progenitors are present in the yolk sac as well as primitive erythroblasts. Multipotent hematopoietic progenitors that arose in the yolk sac before hematopoietic stem cells emerged likely fill the gap between primitive erythropoiesis and hematopoietic stem-cell-originated definitive erythropoiesis and hematopoiesis. In this review, we discuss the cellular origin of primitive erythropoiesis in the yolk sac and definitive hematopoiesis in the fetal liver. We also describe mechanisms for developmental switches that occur during embryonic and fetal erythropoiesis and hematopoiesis, particularly focusing on recent studies performed in mice.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mengyao Niu ◽  
Breanne N. Steffan ◽  
Gregory J. Fischer ◽  
Nandhitha Venkatesh ◽  
Nicholas L. Raffa ◽  
...  

Abstract Filamentous fungi differentiate along complex developmental programs directed by abiotic and biotic signals. Currently, intrinsic signals that govern fungal development remain largely unknown. Here we show that an endogenously produced and secreted fungal oxylipin, 5,8-diHODE, induces fungal cellular differentiation, including lateral branching in pathogenic Aspergillus fumigatus and Aspergillus flavus, and appressorium formation in the rice blast pathogen Magnaporthe grisea. The Aspergillus branching response is specific to a subset of oxylipins and is signaled through G-protein coupled receptors. RNA-Seq profiling shows differential expression of many transcription factors in response to 5,8-diHODE. Screening of null mutants of 33 of those transcription factors identifies three transcriptional regulators that appear to mediate the Aspergillus branching response; one of the mutants is locked in a hypo-branching phenotype, while the other two mutants display a hyper-branching phenotype. Our work reveals an endogenous signal that triggers crucial developmental processes in filamentous fungi, and opens new avenues for research on the morphogenesis of filamentous fungi.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Chuanfu Dong ◽  
Cameron J Weadick ◽  
Vincent Truffault ◽  
Ralf J Sommer

The small molecules that mediate chemical communication between nematodes—so-called ‘nematode-derived-modular-metabolites’ (NDMMs)—are of major interest because of their ability to regulate development, behavior, and life-history. Pristionchus pacificus nematodes produce an impressive diversity of structurally complex NDMMs, some of which act as primer pheromones that are capable of triggering irreversible developmental switches. Many of these NDMMs have only ever been found in P. pacificus but no attempts have been made to study their evolution by profiling closely related species. This study brings a comparative perspective to the biochemical study of NDMMs through the systematic MS/MS- and NMR-based analysis of exo-metabolomes from over 30 Pristionchus species. We identified 36 novel compounds and found evidence for the convergent evolution of complex NDMMs in separate branches of the Pristionchus phylogeny. Our results demonstrate that biochemical innovation is a recurrent process in Pristionchus nematodes, a pattern that is probably typical across the animal kingdom.


2019 ◽  
Author(s):  
Vedrana Marković ◽  
Fatima Cvrčková ◽  
Martin Potocký ◽  
Přemysl Pejchar ◽  
Eva Kollárová ◽  
...  

ABSTRACTPollen development, pollen grain germination and pollen tube elongation are crucial biological processes in angiosperm plants that need precise regulation to deliver sperm cells to fertilize ovules. Pollen grains undergo two major developmental switches: dehydration characterized by metabolic quiescent state, and rehydration upon pollination that leads to extraordinary metabolic and membrane trafficking activity, resulting in germination and rapid tip growth of pollen tubes. To sustain these processes, many plant housekeeping genes evolved their pollen-specific paralogs. Highly polarized secretion at a growing pollen tube tip requires the exocyst tethering complex responsible for specific targeting of secretory vesicles to the plasma membrane. Here, we describe that EXO70A2 (At5g52340) is the main exocyst EXO70 isoform in Arabidopsis pollen, which governs the conventional secretory function of the exocyst, analogically to EXO70A1 (At5g03540) in the sporophyte. Our analysis of a CRISPR-generated exo70a2 mutant revealed that EXO70A2 is essential for efficient pollen maturation, pollen grain germination and pollen tube growth. GFP:EXO70A2 was localized similarly to other exocyst subunits to the apical domain in growing pollen tube tips characterized by intensive exocytosis. Moreover, EXO70A2 could substitute for the EXO70A1 function in the sporophyte, indicating functional redundancy of these two closely related isoforms. Phylogenetic analysis revealed that the ancient duplication of EXO70A to two (or more) paralogs, one of which is highly expressed in pollen, occurred independently in monocots and dicots. In summary, EXO70A2 is a crucial component of the exocyst complex in the Arabidopsis pollen required for efficient plant sexual reproduction.


2019 ◽  
Vol 116 (28) ◽  
pp. 14164-14173 ◽  
Author(s):  
Majida El Bakkouri ◽  
Imène Kouidmi ◽  
Amy K. Wernimont ◽  
Mehrnaz Amani ◽  
Ashley Hutchinson ◽  
...  

The cyclic guanosine-3′,5′-monophosphate (cGMP)-dependent protein kinase (PKG) was identified >25 y ago; however, efforts to obtain a structure of the entire PKG enzyme or catalytic domain from any species have failed. In malaria parasites, cooperative activation of PKG triggers crucial developmental transitions throughout the complex life cycle. We have determined the cGMP-free crystallographic structures of PKG fromPlasmodium falciparumandPlasmodium vivax, revealing how key structural components, including an N-terminal autoinhibitory segment (AIS), four predicted cyclic nucleotide-binding domains (CNBs), and a kinase domain (KD), are arranged when the enzyme is inactive. The four CNBs and the KD are in a pentagonal configuration, with the AIS docked in the substrate site of the KD in a swapped-domain dimeric arrangement. We show that although the protein is predominantly a monomer (the dimer is unlikely to be representative of the physiological form), the binding of the AIS is necessary to keepPlasmodiumPKG inactive. A major feature is a helix serving the dual role of the N-terminal helix of the KD as well as the capping helix of the neighboring CNB. A network of connecting helices between neighboring CNBs contributes to maintaining the kinase in its inactive conformation. We propose a scheme in which cooperative binding of cGMP, beginning at the CNB closest to the KD, transmits conformational changes around the pentagonal molecule in a structural relay mechanism, enabling PKG to orchestrate rapid, highly regulated developmental switches in response to dynamic modulation of cGMP levels in the parasite.


2019 ◽  
Vol 374 (1770) ◽  
pp. 20190039 ◽  
Author(s):  
Bram Kuijper ◽  
Mark A. Hanson ◽  
Emma I. K. Vitikainen ◽  
Harry H. Marshall ◽  
Susan E. Ozanne ◽  
...  

Variation in early-life conditions can trigger developmental switches that lead to predictable individual differences in adult behaviour and physiology. Despite evidence for such early-life effects being widespread both in humans and throughout the animal kingdom, the evolutionary causes and consequences of this developmental plasticity remain unclear. The current issue aims to bring together studies of early-life effects from the fields of both evolutionary ecology and biomedicine to synthesise and advance current knowledge of how information is used during development, the mechanisms involved, and how early-life effects evolved. We hope this will stimulate further research into early-life effects, improving our understanding of why individuals differ and how this might influence their susceptibility to disease.This article is part of the theme issue ‘Developing differences: early-life effects and evolutionary medicine’.


Sign in / Sign up

Export Citation Format

Share Document