scholarly journals CellMixS: quantifying and visualizing batch effects in single cell RNA-seq data

2020 ◽  
Author(s):  
Almut Luetge ◽  
Joanna Zyprych-Walczak ◽  
Urszula Brykczynska Kunzmann ◽  
Helena L Crowell ◽  
Daniela Calini ◽  
...  

A key challenge in single cell RNA-sequencing (scRNA-seq) data analysis are dataset- and batch-specific differences that can obscure the biological signal of interest. While there are various tools and methods to perform data integration and correct for batch effects, their performance can vary between datasets and according to the nature of the bias. Therefore, it is important to understand how batch effects manifest in order to adjust for them in a reliable way. Here, we systematically explore batch effects in a variety of scRNA-seq datasets according to magnitude, cell type specificity and complexity. We developed a cell-specific mixing score (cms) that quantifies how well cells from multiple batches are mixed. By considering distance distributions (in a lower dimensional space), the score is able to detect local batch bias and differentiate between unbalanced batches (i.e., when one cell type is more abundant in a batch) and systematic differences between cells of the same cell type. We implemented cms and related metrics to detect batch effects or measure structure preservation in the CellMixS R/Bioconductor package. We systematically compare different metrics that have been proposed to quantify batch effects or bias in scRNA-seq data using real datasets with known batch effects and synthetic data that mimic various real data scenarios. While these metrics target the same question and are used interchangeably, we find differences in inter- and intra-dataset scalability, sensitivity and in a metric's ability to handle batch effects with differentially abundant cell types. We find that cell-specific metrics outperform cell type-specific and global metrics and recommend them for both method benchmarks and batch exploration.

2021 ◽  
Vol 4 (6) ◽  
pp. e202001004
Author(s):  
Almut Lütge ◽  
Joanna Zyprych-Walczak ◽  
Urszula Brykczynska Kunzmann ◽  
Helena L Crowell ◽  
Daniela Calini ◽  
...  

A key challenge in single-cell RNA-sequencing (scRNA-seq) data analysis is batch effects that can obscure the biological signal of interest. Although there are various tools and methods to correct for batch effects, their performance can vary. Therefore, it is important to understand how batch effects manifest to adjust for them. Here, we systematically explore batch effects across various scRNA-seq datasets according to magnitude, cell type specificity, and complexity. We developed a cell-specific mixing score (cms) that quantifies mixing of cells from multiple batches. By considering distance distributions, the score is able to detect local batch bias as well as differentiate between unbalanced batches and systematic differences between cells of the same cell type. We compare metrics in scRNA-seq data using real and synthetic datasets and whereas these metrics target the same question and are used interchangeably, we find differences in scalability, sensitivity, and ability to handle differentially abundant cell types. We find that cell-specific metrics outperform cell type–specific and global metrics and recommend them for both method benchmarks and batch exploration.


2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


Author(s):  
Yinghao Cao ◽  
Xiaoyue Wang ◽  
Gongxin Peng

AbstractCurrently most methods take manual strategies to annotate cell types after clustering the single-cell RNA sequencing (scRNA-seq) data. Such methods are labor-intensive and heavily rely on user expertise, which may lead to inconsistent results. We present SCSA, an automatic tool to annotate cell types from scRNA-seq data, based on a score annotation model combining differentially expressed genes (DEGs) and confidence levels of cell markers from both known and user-defined information. Evaluation on real scRNA-seq datasets from different sources with other methods shows that SCSA is able to assign the cells into the correct types at a fully automated mode with a desirable precision.


2019 ◽  
Author(s):  
Yuchen Yang ◽  
Gang Li ◽  
Huijun Qian ◽  
Kirk C. Wilhelmsen ◽  
Yin Shen ◽  
...  

AbstractBatch effect correction has been recognized to be indispensable when integrating single-cell RNA sequencing (scRNA-seq) data from multiple batches. State-of-the-art methods ignore single-cell cluster label information, but such information can improve effectiveness of batch effect correction, particularly under realistic scenarios where biological differences are not orthogonal to batch effects. To address this issue, we propose SMNN for batch effect correction of scRNA-seq data via supervised mutual nearest neighbor detection. Our extensive evaluations in simulated and real datasets show that SMNN provides improved merging within the corresponding cell types across batches, leading to reduced differentiation across batches over MNN, Seurat v3, and LIGER. Furthermore, SMNN retains more cell type-specific features, partially manifested by differentially expressed genes identified between cell types after SMNN correction being biologically more relevant, with precision improving by up to 841%.Key PointsBatch effect correction has been recognized to be critical when integrating scRNA-seq data from multiple batches due to systematic differences in time points, generating laboratory and/or handling technician(s), experimental protocol, and/or sequencing platform.Existing batch effect correction methods that leverages information from mutual nearest neighbors across batches (for example, implemented in SC3 or Seurat) ignore cell type information and suffer from potentially mismatching single cells from different cell types across batches, which would lead to undesired correction results, especially under the scenario where variation from batch effects is non-negligible compared with biological effects.To address this critical issue, here we present SMNN, a supervised machine learning method that first takes cluster/cell-type label information from users or inferred from scRNA-seq clustering, and then searches mutual nearest neighbors within each cell type instead of global searching.Our SMNN method shows clear advantages over three state-of-the-art batch effect correction methods and can better mix cells of the same cell type across batches and more effectively recover cell-type specific features, in both simulations and real datasets.


2021 ◽  
Author(s):  
Dongshunyi Li ◽  
Jun Ding ◽  
Ziv Bar-Joseph

One of the first steps in the analysis of single cell RNA-Sequencing data (scRNA-Seq) is the assignment of cell types. While a number of supervised methods have been developed for this, in most cases such assignment is performed by first clustering cells in low-dimensional space and then assigning cell types to different clusters. To overcome noise and to improve cell type assignments we developed UNIFAN, a neural network method that simultaneously clusters and annotates cells using known gene sets. UNIFAN combines both, low dimension representation for all genes and cell specific gene set activity scores to determine the clustering. We applied UNIFAN to human and mouse scRNA-Seq datasets from several different organs. As we show, by using knowledge on gene sets, UNIFAN greatly outperforms prior methods developed for clustering scRNA-Seq data. The gene sets assigned by UNIFAN to different clusters provide strong evidence for the cell type that is represented by this cluster making annotations easier.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Dustin J Sokolowski ◽  
Mariela Faykoo-Martinez ◽  
Lauren Erdman ◽  
Huayun Hou ◽  
Cadia Chan ◽  
...  

Abstract RNA sequencing (RNA-seq) is widely used to identify differentially expressed genes (DEGs) and reveal biological mechanisms underlying complex biological processes. RNA-seq is often performed on heterogeneous samples and the resulting DEGs do not necessarily indicate the cell-types where the differential expression occurred. While single-cell RNA-seq (scRNA-seq) methods solve this problem, technical and cost constraints currently limit its widespread use. Here we present single cell Mapper (scMappR), a method that assigns cell-type specificity scores to DEGs obtained from bulk RNA-seq by leveraging cell-type expression data generated by scRNA-seq and existing deconvolution methods. After evaluating scMappR with simulated RNA-seq data and benchmarking scMappR using RNA-seq data obtained from sorted blood cells, we asked if scMappR could reveal known cell-type specific changes that occur during kidney regeneration. scMappR appropriately assigned DEGs to cell-types involved in kidney regeneration, including a relatively small population of immune cells. While scMappR can work with user-supplied scRNA-seq data, we curated scRNA-seq expression matrices for ∼100 human and mouse tissues to facilitate its stand-alone use with bulk RNA-seq data from these species. Overall, scMappR is a user-friendly R package that complements traditional differential gene expression analysis of bulk RNA-seq data.


2020 ◽  
Author(s):  
Songwei Ge ◽  
Haohan Wang ◽  
Amir Alavi ◽  
Eric Xing ◽  
Ziv Bar-Joseph

AbstractDimensionality reduction is an important first step in the analysis of single cell RNA-seq (scRNA-seq) data. In addition to enabling the visualization of the profiled cells, such representations are used by many downstream analyses methods ranging from pseudo-time reconstruction to clustering to alignment of scRNA-seq data from different experiments, platforms, and labs. Both supervised and unsupervised methods have been proposed to reduce the dimension of scRNA-seq. However, all methods to date are sensitive to batch effects. When batches correlate with cell types, as is often the case, their impact can lead to representations that are batch rather than cell type specific. To overcome this we developed a domain adversarial neural network model for learning a reduced dimension representation of scRNA-seq data. The adversarial model tries to simultaneously optimize two objectives. The first is the accuracy of cell type assignment and the second is the inability to distinguish the batch (domain). We tested the method by using the resulting representation to align several different datasets. As we show, by overcoming batch effects our method was able to correctly separate cell types, improving on several prior methods suggested for this task. Analysis of the top features used by the network indicates that by taking the batch impact into account, the reduced representation is much better able to focus on key genes for each cell type.


2020 ◽  
Author(s):  
Hanbin Lee ◽  
Chanwoo Kim ◽  
Juhee Jeong ◽  
Keehoon Jung ◽  
Buhm Han

AbstractWe present scIntegral, a scalable and accurate method to identify cell types in scRNA data. Our method probabilistically identifies cell-types of the cells in a semi-supervised manner using marker list information as prior. scIntegral is more accurate than existing state-of-the-art methods, reducing the error rate by up to three-folds in real data. scIntegral can precisely identify very rare (<0.5%) cell populations, suggesting utilities for in-silico cell extraction. A notable application of scIntegral is to systematically integrate scRNA-seq data of multiple donors with strong heterogeneity and batch effects. scIntegral is extremely efficient and takes only an hour to integrate ten thousand donor data, while fully accounting for heterogeneity with covariates. Many previous methods focused on integrating multi-sample data in the cluster level, but it was challenging to quantitatively measure the benefit of integration. We show that integrating multiple donors can significantly reduce the error rate in cell-type identification, when measured with respect to the gold standard cell labels. scIntegral is freely available at https://github.com/hanbin973/scIntegral.


2019 ◽  
Author(s):  
Fangda Song ◽  
Ga Ming Chan ◽  
Yingying Wei

AbstractDespite their widespread applications, single-cell RNA-sequencing (scRNA-seq) experiments are still plagued by batch effects and dropout events. Although the completely randomized experimental design has frequently been advocated to control for batch effects, it is rarely implemented in real applications due to time and budget constraints. Here, we mathematically prove that under two more flexible and realistic experimental designs—the “reference panel” and the “chain-type” designs—true biological variability can also be separated from batch effects. We develop Batch effects correction with Unknown Subtypes for scRNA-seq data (BUSseq), which is an interpretable Bayesian hierarchical model that closely follows the data-generating mechanism of scRNA-seq experiments. BUSseq can simultaneously correct batch effects, cluster cell types, impute missing data caused by dropout events, and detect differentially expressed genes without requiring a preliminary normalization step. We demonstrate that BUSseq outperforms existing methods with simulated and real data.


2022 ◽  
Author(s):  
Chenfei Wang ◽  
Pengfei Ren ◽  
Xiaoying Shi ◽  
Xin Dong ◽  
Zhiguang Yu ◽  
...  

Abstract The rapid accumulation of single-cell RNA-seq data has provided rich resources to characterize various human cell types. Cell type annotation is the critical step in analyzing single-cell RNA-seq data. However, accurate cell type annotation based on public references is challenging due to the inconsistent annotations, batch effects, and poor characterization of rare cell types. Here, we introduce SELINA (single cELl identity NAvigator), an integrative annotation transferring framework for automatic cell type annotation. SELINA optimizes the annotation for minority cell types by synthetic minority over-sampling, removes batch effects among reference datasets using a multiple-adversarial domain adaptation network (MADA), and fits the query data with reference data using an autoencoder. Finally, SELINA affords a comprehensive and uniform reference atlas with 1.7 million cells covering 230 major human cell types. We demonstrated the robustness and superiority of SELINA in most human tissues compared to existing methods. SELINA provided a one-stop solution for human single- cell RNA-seq data annotation with the potential to extend for other species.


Sign in / Sign up

Export Citation Format

Share Document