scholarly journals Supervised Adversarial Alignment of Single-Cell RNA-seq Data

2020 ◽  
Author(s):  
Songwei Ge ◽  
Haohan Wang ◽  
Amir Alavi ◽  
Eric Xing ◽  
Ziv Bar-Joseph

AbstractDimensionality reduction is an important first step in the analysis of single cell RNA-seq (scRNA-seq) data. In addition to enabling the visualization of the profiled cells, such representations are used by many downstream analyses methods ranging from pseudo-time reconstruction to clustering to alignment of scRNA-seq data from different experiments, platforms, and labs. Both supervised and unsupervised methods have been proposed to reduce the dimension of scRNA-seq. However, all methods to date are sensitive to batch effects. When batches correlate with cell types, as is often the case, their impact can lead to representations that are batch rather than cell type specific. To overcome this we developed a domain adversarial neural network model for learning a reduced dimension representation of scRNA-seq data. The adversarial model tries to simultaneously optimize two objectives. The first is the accuracy of cell type assignment and the second is the inability to distinguish the batch (domain). We tested the method by using the resulting representation to align several different datasets. As we show, by overcoming batch effects our method was able to correctly separate cell types, improving on several prior methods suggested for this task. Analysis of the top features used by the network indicates that by taking the batch impact into account, the reduced representation is much better able to focus on key genes for each cell type.

2020 ◽  
Author(s):  
Mohit Goyal ◽  
Guillermo Serrano ◽  
Ilan Shomorony ◽  
Mikel Hernaez ◽  
Idoia Ochoa

AbstractSingle-cell RNA-seq is a powerful tool in the study of the cellular composition of different tissues and organisms. A key step in the analysis pipeline is the annotation of cell-types based on the expression of specific marker genes. Since manual annotation is labor-intensive and does not scale to large datasets, several methods for automated cell-type annotation have been proposed based on supervised learning. However, these methods generally require feature extraction and batch alignment prior to classification, and their performance may become unreliable in the presence of cell-types with very similar transcriptomic profiles, such as differentiating cells. We propose JIND, a framework for automated cell-type identification based on neural networks that directly learns a low-dimensional representation (latent code) in which cell-types can be reliably determined. To account for batch effects, JIND performs a novel asymmetric alignment in which the transcriptomic profile of unseen cells is mapped onto the previously learned latent space, hence avoiding the need of retraining the model whenever a new dataset becomes available. JIND also learns cell-type-specific confidence thresholds to identify and reject cells that cannot be reliably classified. We show on datasets with and without batch effects that JIND classifies cells more accurately than previously proposed methods while rejecting only a small proportion of cells. Moreover, JIND batch alignment is parallelizable, being more than five or six times faster than Seurat integration. Availability: https://github.com/mohit1997/JIND.


2021 ◽  
Vol 4 (6) ◽  
pp. e202001004
Author(s):  
Almut Lütge ◽  
Joanna Zyprych-Walczak ◽  
Urszula Brykczynska Kunzmann ◽  
Helena L Crowell ◽  
Daniela Calini ◽  
...  

A key challenge in single-cell RNA-sequencing (scRNA-seq) data analysis is batch effects that can obscure the biological signal of interest. Although there are various tools and methods to correct for batch effects, their performance can vary. Therefore, it is important to understand how batch effects manifest to adjust for them. Here, we systematically explore batch effects across various scRNA-seq datasets according to magnitude, cell type specificity, and complexity. We developed a cell-specific mixing score (cms) that quantifies mixing of cells from multiple batches. By considering distance distributions, the score is able to detect local batch bias as well as differentiate between unbalanced batches and systematic differences between cells of the same cell type. We compare metrics in scRNA-seq data using real and synthetic datasets and whereas these metrics target the same question and are used interchangeably, we find differences in scalability, sensitivity, and ability to handle differentially abundant cell types. We find that cell-specific metrics outperform cell type–specific and global metrics and recommend them for both method benchmarks and batch exploration.


2019 ◽  
Author(s):  
Matthew N. Bernstein ◽  
Zhongjie Ma ◽  
Michael Gleicher ◽  
Colin N. Dewey

SummaryCell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology.HighlightWe present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell OntologyCellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read ArchiveCellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training setCellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell OntologyGraphical Abstract


2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.


2019 ◽  
Author(s):  
Yuchen Yang ◽  
Gang Li ◽  
Huijun Qian ◽  
Kirk C. Wilhelmsen ◽  
Yin Shen ◽  
...  

AbstractBatch effect correction has been recognized to be indispensable when integrating single-cell RNA sequencing (scRNA-seq) data from multiple batches. State-of-the-art methods ignore single-cell cluster label information, but such information can improve effectiveness of batch effect correction, particularly under realistic scenarios where biological differences are not orthogonal to batch effects. To address this issue, we propose SMNN for batch effect correction of scRNA-seq data via supervised mutual nearest neighbor detection. Our extensive evaluations in simulated and real datasets show that SMNN provides improved merging within the corresponding cell types across batches, leading to reduced differentiation across batches over MNN, Seurat v3, and LIGER. Furthermore, SMNN retains more cell type-specific features, partially manifested by differentially expressed genes identified between cell types after SMNN correction being biologically more relevant, with precision improving by up to 841%.Key PointsBatch effect correction has been recognized to be critical when integrating scRNA-seq data from multiple batches due to systematic differences in time points, generating laboratory and/or handling technician(s), experimental protocol, and/or sequencing platform.Existing batch effect correction methods that leverages information from mutual nearest neighbors across batches (for example, implemented in SC3 or Seurat) ignore cell type information and suffer from potentially mismatching single cells from different cell types across batches, which would lead to undesired correction results, especially under the scenario where variation from batch effects is non-negligible compared with biological effects.To address this critical issue, here we present SMNN, a supervised machine learning method that first takes cluster/cell-type label information from users or inferred from scRNA-seq clustering, and then searches mutual nearest neighbors within each cell type instead of global searching.Our SMNN method shows clear advantages over three state-of-the-art batch effect correction methods and can better mix cells of the same cell type across batches and more effectively recover cell-type specific features, in both simulations and real datasets.


2022 ◽  
Author(s):  
Matthew T Buckley ◽  
Eric Sun ◽  
Benson M. George ◽  
Ling Liu ◽  
Nicholas Schaum ◽  
...  

Aging manifests as progressive dysfunction culminating in death. The diversity of cell types is a challenge to the precise quantification of aging and its reversal. Here we develop a suite of 'aging clocks' based on single cell transcriptomic data to characterize cell type-specific aging and rejuvenation strategies. The subventricular zone (SVZ) neurogenic region contains many cell types and provides an excellent system to study cell-level tissue aging and regeneration. We generated 21,458 single-cell transcriptomes from the neurogenic regions of 28 mice, tiling ages from young to old. With these data, we trained a suite of single cell-based regression models (aging clocks) to predict both chronological age (passage of time) and biological age (fitness, in this case the proliferative capacity of the neurogenic region). Both types of clocks perform well on independent cohorts of mice. Genes underlying the single cell-based aging clocks are mostly cell-type specific, but also include a few shared genes in the interferon and lipid metabolism pathways. We used these single cell-based aging clocks to measure transcriptomic rejuvenation, by generating single cell RNA-seq datasets of SVZ neurogenic regions for two interventions - heterochronic parabiosis (young blood) and exercise. Interestingly, the use of aging clocks reveals that both heterochronic parabiosis and exercise reverse transcriptomic aging in the niche, but in different ways across cell types and genes. This study represents the first development of high-resolution aging clocks from single cell transcriptomic data and demonstrates their application to quantify transcriptomic rejuvenation.


2020 ◽  
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

AbstractAllelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.Author SummaryDetection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI use bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009080
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

Allelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.


2021 ◽  
Author(s):  
Yongjin Park ◽  
Liang He ◽  
Jose Davila-Velderrain ◽  
Lei Hou ◽  
Shahin Mohammadi ◽  
...  

AbstractThousands of genetic variants acting in multiple cell types underlie complex disorders, yet most gene expression studies profile only bulk tissues, making it hard to resolve where genetic and non-genetic contributors act. This is particularly important for psychiatric and neurodegenerative disorders that impact multiple brain cell types with highly-distinct gene expression patterns and proportions. To address this challenge, we develop a new framework, SPLITR, that integrates single-nucleus and bulk RNA-seq data, enabling phenotype-aware deconvolution and correcting for systematic discrepancies between bulk and single-cell data. We deconvolved 3,387 post-mortem brain samples across 1,127 individuals and in multiple brain regions. We find that cell proportion varies across brain regions, individuals, disease status, and genotype, including genetic variants in TMEM106B that impact inhibitory neuron fraction and 4,757 cell-type-specific eQTLs. Our results demonstrate the power of jointly analyzing bulk and single-cell RNA-seq to provide insights into cell-type-specific mechanisms for complex brain disorders.


2022 ◽  
Author(s):  
Chenfei Wang ◽  
Pengfei Ren ◽  
Xiaoying Shi ◽  
Xin Dong ◽  
Zhiguang Yu ◽  
...  

Abstract The rapid accumulation of single-cell RNA-seq data has provided rich resources to characterize various human cell types. Cell type annotation is the critical step in analyzing single-cell RNA-seq data. However, accurate cell type annotation based on public references is challenging due to the inconsistent annotations, batch effects, and poor characterization of rare cell types. Here, we introduce SELINA (single cELl identity NAvigator), an integrative annotation transferring framework for automatic cell type annotation. SELINA optimizes the annotation for minority cell types by synthetic minority over-sampling, removes batch effects among reference datasets using a multiple-adversarial domain adaptation network (MADA), and fits the query data with reference data using an autoencoder. Finally, SELINA affords a comprehensive and uniform reference atlas with 1.7 million cells covering 230 major human cell types. We demonstrated the robustness and superiority of SELINA in most human tissues compared to existing methods. SELINA provided a one-stop solution for human single- cell RNA-seq data annotation with the potential to extend for other species.


Sign in / Sign up

Export Citation Format

Share Document