scholarly journals Silver thiosulfate and Benzyladenine in combination with pruning additively feminizes cassava flowers and modulates transcriptome

Author(s):  
Oluwasanya Deborah ◽  
Esan Olayemisi ◽  
Hyde Peter ◽  
Kulakow Peter ◽  
Setter Tim

AbstractCassava, a tropical storage-root crop, is a major source of food security for millions in the tropics. Cassava breeding however is hindered by the poor development of flowers and female flowers in particular, since flower development is strongly skewed towards male flowers. Our objectives were to test plant growth regulator and pruning treatments for their effectiveness in field conditions in improving flower production and fruit set in cassava. Pruning the fork type branches that arise at the shoot apex immediately below newly formed inflorescences stimulated inflorescence and floral development. The anti-ethylene silver thiosulfate (STS) also increased flower abundance. Both pruning and STS increased flower numbers without influencing sex ratios. In contrast, the cytokinin benzyladenine (BA) feminized flowers without increasing flower abundance. Combining pruning and STS treatments led to an additive increase in flower abundance; with the addition of BA, over 80% of flowers were females. This three-way treatment combination of pruning+STS+BA also led to an increase in fruit development. Transcriptomic analysis of gene expression in tissues of the apical region and developing inflorescence revealed that the enhancement of female flower development by STS+BA was accompanied by the downregulation in of several genes associated with repression of flowering, including Tempranillo 1 (TEM1), GA receptor GID1b, and ABA signaling genes ABI1 and PP2CA. We conclude that treatments with pruning, STS and BA create widespread changes on the network of hormone signaling and regulatory factors beyond ethylene and cytokinin.

2021 ◽  
Vol 12 ◽  
Author(s):  
Deborah Oluwasanya ◽  
Olayemisi Esan ◽  
Peter T. Hyde ◽  
Peter Kulakow ◽  
Tim L. Setter

Cassava, a tropical storage-root crop, is a major source of food security for millions in the tropics. Cassava breeding, however, is hindered by the poor development of flowers and a low ratio of female flowers to male flowers. To advance the understanding of the mechanistic factors regulating cassava flowering, combinations of plant growth regulators (PGRs) and pruning treatments were examined for their effectiveness in improving flower production and fruit set in field conditions. Pruning the fork-type branches, which arise at the shoot apex immediately below newly formed inflorescences, stimulated inflorescence and floral development. The anti-ethylene PGR silver thiosulfate (STS) also increased flower abundance. Both pruning and STS increased flower numbers while having minimal influence on sex ratios. In contrast, the cytokinin benzyladenine (BA) feminized flowers without increasing flower abundance. Combining pruning and STS treatments led to an additive increase in flower abundance; with the addition of BA, over 80% of flowers were females. This three-way treatment combination of pruning+STS+BA also led to an increase in fruit number. Transcriptomic analysis of gene expression in tissues of the apical region and developing inflorescence revealed that the enhancement of flower development by STS+BA was accompanied by downregulation of several genes associated with repression of flowering, including homologs of TEMPRANILLO1 (TEM1), GA receptor GID1b, and ABA signaling genes ABI1 and PP2CA. We conclude that flower-enhancing treatments with pruning, STS, and BA create widespread changes in the network of hormone signaling and regulatory factors beyond ethylene and cytokinin.


2019 ◽  
Vol 90 (3) ◽  
pp. 441-453 ◽  
Author(s):  
Peter T. Hyde ◽  
Xian Guan ◽  
Viviane Abreu ◽  
Tim L. Setter

Abstract Cassava, which produces edible starchy roots, is an important staple food for hundreds of millions of people in the tropics. Breeding of cassava is hampered by its poor flower production, flower abortion, and lack of reproductive prolificacy. The current work determined that ethylene signalling affects floral development in cassava and that the anti-ethylene plant growth regulator silver thiosulfate (STS) mitigates the effects of ethylene on flower development. STS did not affect the timing of flower initiation, but improved early inflorescence and flower development as well as flower longevity such that flower numbers were increased. STS did not affect shoot and storage root growth. Studies of silver accumulation and treatment localization support the hypothesis that the beneficial effects of STS are confined to tissues of the shoot apex. The most effective timing of application was before inflorescence appearance extending to post-flower appearance. Based on this work a recommended protocol for STS use was developed. This work has the potential to improve methods for enhancing cassava flower development in breeding nurseries and thereby synchronize flowering of desired parents and enable the production of abundant progeny of desired crosses.


HortScience ◽  
2005 ◽  
Vol 40 (6) ◽  
pp. 1763-1767 ◽  
Author(s):  
Ekaterina Papadopoulou ◽  
Rebecca Grumet

The Cucurbitaceae family is noted for a diversity of sex expression phenotypes. Typically, a phase of male flowers precedes either female or bisexual flower production. Sex determination of individual flowers is regulated by a combination of genetic, environmental, and hormonal factors. Ethylene, auxins, and gibberellins have all been shown to influence flower sex expression in cucurbits. Ethylene, which promotes femaleness, plays a predominant role. In this study, we tested whether brassinosteroids (BR), a more recently identified class of plant hormones, also influences cucurbit sex expression. Applied epi-brassinolide (epi-BL) caused a significant decrease in time of appearance of the first female flower on monoecious cucumber plants, and increased total female flowers on the main stem. Increasing concentrations had a stronger effect. Of the three species tested, cucumber, melon and zucchini, cucumber was the most responsive to BR. Application of epi-BL also caused an increase in ethylene production by cucumber and zucchini seedlings, suggesting that the BR effect may be mediated by ethylene. To investigate the possible relationship between BR and ethylene on sex expression, we identified the concentration of ethephon (5 ppm) that caused an increase in ethylene production comparable to that induced by 10 μm epi-BL (approximately two-fold). Treatment with 5 ppm ethephon was sufficient to increase femaleness of cucumber plants, but not zucchini plants, suggesting that the difference in response to epi-BL treatment may reflect differences in sensitivity to ethylene. Collectively, our results indicate that application of brassinosteroids to cucumber cause earlier and increased female flower production, and that the effects may be mediated, at least in part, by brassinosteroid-induced production of ethylene.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1057C-1057
Author(s):  
Ekaterina Papadopoulou ◽  
Rebecca Grumet

The cucurbit family is noted for diversity in sex expression phenotypes. Typically, a phase of male flowers precedes the appearance of female or hermaphrodite flowers. Sex determination of individual flowers is regulated by genetic, environmental, and hormonal factors. Ethylene, auxins, and gibberellins all influence flower sex, with ethylene, which promotes femaleness, playing a predominant role. In this study, we tested whether brassinosteroids, a more recently identified class of plant hormones, also influence cucurbit sex expression. Applied epi-brassinolide (epi-BL) caused a significant decrease in time of appearance of the first female flower on monoecious cucumber plants, and increased total female flowers on the main stem. Increasing concentrations had a stronger effect. Of the three species tested, cucumber, melon, and zucchini, cucumber was the most responsive. Application of epi-BL also caused an increase in ethylene production by cucumber and zucchini seedlings, suggesting that the BR effect may be mediated by ethylene. To investigate the possible relationship between BR and ethylene on sex expression, we identified the concentration of ethephon (5 ppm) that caused an increase in ethylene production comparable to that induced by 10 μm epi-BL (about two-fold). Treatment with 5 ppm ethephon was sufficient to increase femaleness of cucumber plants, but not zucchini plants, suggesting that the difference in response to epi-BL may reflect differences in sensitivity to ethylene. Collectively, our results indicate that application of brassinosteroids to cucumber cause earlier and increased female flower production, and that the effects may be mediated, at least in part, by brassinosteroid-induced increased production of ethylene.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 526A-526
Author(s):  
R.O. Nyankanga ◽  
H.C. Wien

Increase in plant density often results in reduction in reproductive potential of individual plants in cucurbits. The reduction may be due to reduced female flower production or a reduction or a delay in fruit set or to decreased fruit size. To determine the cause of the reduction, flowering, and fruiting of two pumpkin cultivars was evaluated in four field experiments under four plant densities ranging from 4483 plants/ha to 23,910 plants/ha and in a greenhouse using three levels of shade. Weekly flower and flower bud counts were made in the field experiment starting at first anthesis. Flowers were determined to have either set or aborted or not have reached anthesis. Increasing plant population from 4483 plants/ha to 23,910 plants/ha resulted in an increase in number of flowers per unit area up to 11,955 plants/ha, beyond which there was a steep decline. Increased plant density also resulted in an increase in aborted female flower buds that did not reach anthesis. Increase in plant density only reduced fruit set at very high populations. Number of fruits per area increased linearly with plant density up to 11,955 plants/ha, but decreased at higher plant populations. Reducing incident light by 30%, 60%, and 80% in a greenhouse experiment resulted in reduction of both male and female flowers. At 80% shade, there was a complete suppression of female flowers, whereas male flowers were still being produced. The number of female flowers reaching anthesis was positively correlated with total shoot dry weight while floral buds and male flowers were not. Reduction of individual plant biomass under high-density plantings might therefore be limiting female flower production and yield.


2002 ◽  
Vol 80 (11) ◽  
pp. 1203-1208 ◽  
Author(s):  
Lorena Ashworth ◽  
Leonardo Galetto

In dioecious and monoecious plants that depend on animal vectors for reproduction, pollinators have to be attracted to male and female flowers for pollination to be effective. In the monoecious Cucurbita maxima ssp. andreana, male flowers are produced in greater quantity, are spatially more exposed to pollinators and offer pollen in addition to nectar as floral rewards. Nectar traits were compared between male and female flowers to determine any differences in the characteristics of the main reward offered to pollinators. Nectar chemical composition and sugar proportions were similar between flower types. Total nectar sugar production per female flower was threefold higher than per male flower, and nectar removal did not have any effect on total nectar production in both flower morphs. Pollinators reduced nectar standing crops to similar and very scarce amounts in both flower types. Results indicate indirectly that pollinators are consuming more nectar from female flowers, suggesting that the higher nectar production in female flowers may be a reward-based strategy to achieve the high female reproductive output observed in this species.Key words: Cucurbitaceae, Cucurbita maxima ssp. andreana, nectar production, nectar sugar composition, removal effects, standing crop.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Allan Waniale ◽  
Rony Swennen ◽  
Settumba B. Mukasa ◽  
Arthur K. Tugume ◽  
Jerome Kubiriba ◽  
...  

AbstractSterility and low seed set in bananas is the main challenge to their conventional genetic improvement. The first step to seed set in a banana breeding program depends on pollination at the right time to ensure effective fertilization. This study aimed at determining bract opening time (BOT) to enhance efficient pollination and seed set in bananas. A Nikon D810 digital camera was set-up to take pictures of growing banana inflorescences at five-minute intervals and time-lapse movies were developed at a speed of 30 frames per second to allow real-time monitoring of BOT. Genotypes studied included wild banana (1), Mchare (2), Matooke (4), Matooke hybrid (1), and plantain (1). Events of bract opening initiated by bract lift for female flowers (P < 0.01) started at 16:32 h and at 18:54 h for male flowers. Start of bract rolling was at 18:51 h among female flowers (P < 0.001) and 20:48 h for male flowers. Bracts ended rolling at 02:33 h and 01:16 h for female and flowers respectively (P < 0.05). Total time of bract opening (from lift to end of rolling) for female flowers was significantly longer than that of male flowers (P < 0.001). On average, the number of bracts subtending female flowers opening increased from one on the first day, to between one and four on the fourth day. The number regressed to one bract on day eight before start of opening of bracts subtending male flowers. There was a longer opening interval between bracts subtending female and male flowers constituting spatial and temporal separation. Bract rolling increased from partial to complete rolling from proximal to the distal end of the inflorescence among female flower. On the other hand, bracts subtending male flowers completely rolled. Differences in BOT of genotypes with the same reference time of assessment may be partly responsible for variable fertility. Hand pollination time between 07:00 and 10:00 h is slightly late thus an early feasible time should be tried.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pat Iocco-Corena ◽  
Jamila Chaïb ◽  
Laurent Torregrosa ◽  
Don Mackenzie ◽  
Mark R. Thomas ◽  
...  

AbstractPlant genetic sex determinants that mediate the transition to dioecy are predicted to be diverse, as this type of mating system independently evolved multiple times in angiosperms. Wild Vitis species are dioecious with individuals producing morphologically distinct female or male flowers; whereas, modern domesticated Vitis vinifera cultivars form hermaphrodite flowers capable of self-pollination. Here, we identify the VviPLATZ1 transcription factor as a key candidate female flower morphology factor that localizes to the Vitis SEX-DETERMINING REGION. The expression pattern of this gene correlates with the formation reflex stamens, a prominent morphological phenotype of female flowers. After generating CRISPR/Cas9 gene-edited alleles in a hermaphrodite genotype, phenotype analysis shows that individual homozygous lines produce flowers with reflex stamens. Taken together, our results demonstrate that loss of VviPLATZ1 function is a major factor that controls female flower morphology in Vitis.


Sign in / Sign up

Export Citation Format

Share Document