scholarly journals Direct RNA nanopore sequencing of SARS-CoV-2 extracted from critical material from swabs

Author(s):  
Davide Vacca ◽  
Antonino Fiannaca ◽  
Fabio Tramuto ◽  
Valeria Cancila ◽  
Laura La Paglia ◽  
...  

ABSTRACTBackgroundIn consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily.MethodsHere, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retro-transcription.ResultsUsing an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapisid (N) gene, which have been reported previously in studies conducted in other countries.ConclusionTo the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs.Despite these limitations, this approach provides the advantages of true native RNA sequencing, and does not include amplification steps that could introduce systematic errors.This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.We deposited the gene sequence in the NCBI database under the following URL:https://www.ncbi.nlm.nih.gov/nuccore/MT457389

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Davide Vacca ◽  
Antonino Fiannaca ◽  
Fabio Tramuto ◽  
Valeria Cancila ◽  
Laura La Paglia ◽  
...  

In consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing (direct RNA seq.) experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily. Here, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retrotranscription. Using an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapsid (N) gene, which have been reported previously in studies conducted in other countries. In conclusion, to the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs. Despite these limitations, this approach provides the advantages of true native RNA sequencing and does not include amplification steps that could introduce systematic errors. This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.


Author(s):  
E. S. Gribchenko

The transcriptome profiles the cv. Frisson mycorrhizal roots and inoculated nitrogen-fixing nodules were investigated using the Oxford Nanopore sequencing technology. A database of gene isoforms and their expression has been created.


2021 ◽  
Vol 9 (12) ◽  
pp. 2598
Author(s):  
Anton Pembaur ◽  
Erwan Sallard ◽  
Patrick Philipp Weil ◽  
Jennifer Ortelt ◽  
Parviz Ahmad-Nejad ◽  
...  

The scale of the ongoing SARS-CoV-2 pandemic warrants the urgent establishment of a global decentralized surveillance system to recognize local outbreaks and the emergence of novel variants of concern. Among available deep-sequencing technologies, nanopore-sequencing could be an important cornerstone, as it is mobile, scalable, and cost-effective. Therefore, streamlined nanopore-sequencing protocols need to be developed and optimized for SARS-CoV-2 variants identification. We adapted and simplified existing workflows using the ‘midnight’ 1200 bp amplicon split primer sets for PCR, which produce tiled overlapping amplicons covering almost the entire SARS-CoV-2 genome. Subsequently, we applied Oxford Nanopore Rapid Barcoding and the portable MinION Mk1C sequencer combined with the interARTIC bioinformatics pipeline. We tested a simplified and less time-consuming workflow using SARS-CoV-2-positive specimens from clinical routine and identified the CT value as a useful pre-analytical parameter, which may help to decrease sequencing failures rates. Complete pipeline duration was approx. 7 h for one specimen and approx. 11 h for 12 multiplexed barcoded specimens. The adapted protocol contains fewer processing steps and can be completely conducted within one working day. Diagnostic CT values deduced from qPCR standardization experiments can act as principal criteria for specimen selection. As a guideline, SARS-CoV-2 genome copy numbers lower than 4 × 106 were associated with a coverage threshold below 20-fold and incompletely assembled SARS-CoV-2 genomes. Thus, based on the described thermocycler/chemistry combination, we recommend CT values of ~26 or lower to achieve full and high-quality SARS-CoV-2 (+)RNA genome coverage.


2015 ◽  
Author(s):  
Mohan Bolisetty ◽  
Gopinath Rajadinakaran ◽  
Brenton Graveley

Though powerful, short-read high throughput RNA sequencing is limited in its ability to directly measure exon connectivity in mRNAs containing multiple alternative exons located farther apart than the maximum read lengths. Here, we use the Oxford Nanopore MinION™ sequencer to identify 7,899 ‘full-length’ isoforms expressed from four Drosophila genes, Dscam1, MRP, Mhc, and Rdl. These results demonstrate that nanopore sequencing can be used to deconvolute individual isoforms and that it has the potential to be an important method for comprehensive transcriptome characterization.


2021 ◽  
Author(s):  
Anton Pembaur ◽  
Erwan Sallard ◽  
Patrick Philipp Weil ◽  
Jennifer Ortelt ◽  
Parviz Ahmad-Nejad ◽  
...  

Background: The scale of the ongoing SARS-CoV-2 pandemic warrants the urgent establishment a global decentralized surveillance and warning system to recognize local outbreaks and the emergence of novel variants-of-concern. Among the available deep-sequencing technologies, nanopore-sequencing could be an important cornerstone, since it is mobile, scalable and acquisition investments are comparably low. Therefore, streamlined and efficient nanopore-sequencing protocols need to be developed and optimized for SARS-CoV-2 variants identification, in particular for smaller hospital laboratories with lower throughput. Results: We adapted and simplified existing workflows using the midnight 1,200 bp amplicon split primer sets for PCR, which produce tiled overlapping amplicons covering almost all of the SARS-CoV-2 genome. Subsequently, we applied the Oxford Nanopore Rapid barcoding protocol and the portable MinION Mk1C sequencer in combination with the ARTIC bioinformatics pipeline. We tested the simplified and less time-consuming workflow on confirmed SARS-CoV-2-positive specimens from clinical routine and identified pre-analytical parameters, which may help to decrease the rate of sequencing failures. Duration of the complete pipeline was approx. 7 hrs for one specimen and approx. 11 hrs for 12 multiplexed barcoded specimens. Conclusions: The adapted protocol contains less processing steps. Diagnostic CT values are the principal criteria for specimen selection. Subsequent to diagnostic qRT-PCR, multiplex library preparation, quality controls, nanopore sequencing and the bioinformatic pipeline can be completely conducted within one working-day.


Author(s):  
Anne-Lise Ducluzeau ◽  
Rachel M. Lekanoff ◽  
Noah S. Khalsa ◽  
Hillary H. Smith ◽  
Devin M. Drown

Experiential learning in the field is an opportunity for students to enter the heart of a scientific discipline. Through such experience, they can extract conceptual clues and discover motivational stepping stones that will potentially influence the rest of their education and career choice. Unfortunately, in Biology, the inescapable topic of Next-Generation Sequencing represents a challenge when it comes to create an educational curriculum that aims to provide students with hands-on experience on sequencers. It is an even more difficult task to accomplish if one’s purpose was to set such curriculum in a field situation. However, in recent years, educators have seen possibility to bring Next-Generation Sequencing to the reach of students more easily, with the Oxford Nanopore MinION, a low-budget, user-friendly, hand-held sequencer. Academic researchers have illustrated the performances of this device in the field and are inspirational for curricula aiming to take the next generation of scientists in the outdoors. We designed a modular 5-day workshop, with nanopore sequencing to be performed in field conditions. Here we describe the material and methods that lead the students and instructors from sample collection, DNA extraction and preparation for nanopore sequencing with MinION to real-time analysis of the data collected. This curriculum was implemented for the first-time aboard Research Vessel Sikuliaq during a transit organized by the STEMSEAS program at Columbia University in collaboration with the University of Alaska BLaST program. The line of investigation formulated for the workshop was an open-ended question that led the students to establish a proof of concept in terms of technology deployment at sea: what will show metagenomic results from DNA obtained from sea water and sequenced with Oxford Nanopore MinION? The workshop took place in October 2018 while Research Vessel Sikuliaq sailed the Alaskans seas for 7 days. Students successfully used nanopore sequencing for multiple metagenomic seawater samples. Their introductory analysis was consistent with environmental conditions and they were able to present their results by the end of the workshop.


2022 ◽  
Author(s):  
Doaa Hassan Salem ◽  
Aditya Ariyur ◽  
Swapna Vidhur Daulatabad ◽  
Quoseena Mir ◽  
Sarath Chandra Janga

Nm (2′-O-methylation) is one of the most abundant modifications of mRNAs and non-coding RNAs occurring when a methyl group (–CH3) is added to the 2′ hydroxyl (–OH) of the ribose moiety. This modification can appear on any nucleotide (base) regardless of the type of nitrogenous base, because each ribose sugar has a hydroxyl group and so 2′-O-methyl ribose can occur on any base. Nm modification has a great contribution in many biological processes such as the normal functioning of tRNA, the protection of mRNA against degradation by DXO, and the biogenesis and specificity of rRNA. Recently, the single-molecule sequencing techniques for long reads of RNA sequences data offered by Oxford Nanopore technologies have enabled the direct detection of RNA modifications on the molecule that is being sequenced, but to our knowledge there was only one research attempt that applied this technology to predict the stoichiometry of Nm-modified sites in RNA sequence of yeast cells. To this end, in this paper, we extend this research direction by proposing a bio-computational framework, Nm-Nano for predicting Nm sites in Nanopore direct RNA sequencing reads of human cell lines. Nm-Nano framework integrates two supervised machine learning models for predicting Nm sites in Nanopore sequencing data, namely Xgboost and Random Forest (RF). Each model is trained with set of features that are extracted from the raw signal generated by the Oxford Nanopore MinION device, as well as the corresponding basecalled k-mer resulting from inferring the RNA sequence reads from the generated Nanopore signals. The results on two benchmark data sets generated from RNA Nanopore sequencing data of Hela and Hek293 cell lines show a great performance of Nm-Nano. In independent validation testing, Nm-Nano has been able to identify Nm sites with a high accuracy of 93% and 88% using Xgboost and RF models respectively by training each model with Hela benchmark dataset and testing it for identifying Nm sites on Hek293 benchmark dataset. Thus, Nm-Nano outperforms the Nm sites predictors existing in the literature (not relying on Nanopore technology) that were only limited to predict Nm sites on short reads of RNA sequences and unable to predict Nm sites on long RNA sequence reads. By deploying Nm-Nano to predict Nm sites in Hela cell line, it was revealed that a total of 196 genes was identified to have the most abundance of Nm modification among all other genes that have been modified by Nm in this cell line. Similarly, deploying Nm-Nano to predict Nm sites in Hek393 cell line revealed that a total of 196 genes line was identified to have the most abundance of Nm modification among all other genes that have been modified by Nm in this cell line. According to this, a significant enrichment of a wide range of functional processes like high confidences (adjusted p-val < 0.05) enriched ontologies that were more representative of Nm modification role in immune response and cellular homeostasis were revealed in Hela cell line, and "MHC class 1 protein complex", "mitotic spindle assembly", "response to glucocorticoid", and "nucleocytoplasmic transport" were revealed in Hek293 cell line. The source code of Nm-Nano can be freely accessed https://github.com/Janga-Lab/Nm-Nano.


2017 ◽  
Author(s):  
K.N.T. Ton ◽  
S.L. Cree ◽  
S.J. Gronert-Sum ◽  
T.R. Merriman ◽  
L.K. Stamp ◽  
...  

AbstractThe human leukocyte antigen (HLA) system is a gene family that encodes the human major histocompatibility complex (MHC). HLA-B is the most polymorphic gene in the MHC class I region, comprised of 4,765 HLA-B alleles (IPD-IMGT/HLA Database Release 3.28). Many HLA-B alleles have been associated with adverse drug reactions and disease risks, and we are interested in developing efficient methods for analysis of HLA alleles in this context. Here we describe an approach to HLA-B typing using multiplexed next generation sequencing on the MinION™ nanopore sequencer (Oxford Nanopore Technologies), combined with data analysis with the SeqNext-HLA software package (JSI Medical Systems GmbH, Ettenheim, Germany). The nanopore sequencer offers the advantages of long-read capability and single molecule reads, which can facilitate effective haplotyping. We developed this method using reference samples of known HLA-B type as well as individuals of New Zealand Māori or Pacific Island (Polynesian) descent, because HLA-B diversity in these populations is not well understood. We demonstrate here that nanopore sequencing of barcoded, pooled, 943 bp polymerase chain reaction (PCR) amplicons of 49 DNA samples, on one R9.4 flowcell (Oxford Nanopore Technologies), generated ample read depth for all samples. Sequence analysis using SeqNext-HLA software assigned HLA-B alleles to all samples at high-resolution with very little ambiguity. Our PCR-based next generation sequencing method is a scaleable and efficient approach for genotyping HLA-B and potentially any other HLA locus. Finally, we report our findings on HLA-B genotypes of this cohort, which adds to our understanding of HLA-B allele frequencies among Māori and Polynesian people.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weihong Qi ◽  
Andrea Colarusso ◽  
Miriam Olombrada ◽  
Ermenegilda Parrilli ◽  
Andrea Patrignani ◽  
...  

Abstract Pseudoalteromonas haloplanktis TAC125 is among the most commonly studied bacteria adapted to cold environments. Aside from its ecological relevance, P. haloplanktis has a potential use for biotechnological applications. Due to its importance, we decided to take advantage of next generation sequencing (Illumina) and third generation sequencing (PacBio and Oxford Nanopore) technologies to resequence its genome. The availability of a reference genome, obtained using whole genome shotgun sequencing, allowed us to study and compare the results obtained by the different technologies and draw useful conclusions for future de novo genome assembly projects. We found that assembly polishing using Illumina reads is needed to achieve a consensus accuracy over 99.9% when using Oxford Nanopore sequencing, but not in PacBio sequencing. However, the dependency of consensus accuracy on coverage is lower in Oxford Nanopore than in PacBio, suggesting that a cost-effective solution might be the use of low coverage Oxford Nanopore sequencing together with Illumina reads. Despite the differences in consensus accuracy, all sequencing technologies revealed the presence of a large plasmid, pMEGA, which was undiscovered until now. Among the most interesting features of pMEGA is the presence of a putative error-prone polymerase regulated through the SOS response. Aside from the characterization of the newly discovered plasmid, we confirmed the sequence of the small plasmid pMtBL and uncovered the presence of a potential partitioning system. Crucially, this study shows that the combination of next and third generation sequencing technologies give us an unprecedented opportunity to characterize our bacterial model organisms at a very detailed level.


Sign in / Sign up

Export Citation Format

Share Document