sequencing experiment
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 20)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Linyi Zhang ◽  
Chen Song ◽  
Yaoyao Xu ◽  
Yajun Shi ◽  
Xiaoling Liu

Abstract A single strain capable of efficient S2−-oxidizing was isolated from a black-odor river in Beijing. The single strain was identified as Stenotrophomonas through the physiology and biochemical characteristics as well as the 16S rRNA sequencing experiment. This strain was named as Stenotrophomonas sp.sp3 (strain sp3). The experimental results showed that for the strain sp3 growth and S2− oxidization, the optimal conditions were as follows: 25 °C of temperature, initial pH 7, 2.5 g/L of initial glucose concentration and 1.00 g/L of initial cell concentration. It was found that there were 31 kinds of sulfur oxidation related genes in the strain sp3 through the whole genomic analysis. The results of the transcriptome analysis suggested that the main metabolic pathway of S2− to SO42− was the paracoccus sulfur oxidation process. The bioconversion processes of S2− to S0, S2− to SO32−, S2O32− to S0 and SO32−, and SO32− to SO42− were controlled by hdrA, cysIJ, tst and sox gene, respectively.


2022 ◽  
Vol 79 (1) ◽  
Author(s):  
Gaëlle Houthaeve ◽  
Gerardo García-Díaz Barriga ◽  
Stephan Stremersch ◽  
Herlinde De Keersmaecker ◽  
Juan Fraire ◽  
...  

AbstractVapor nanobubble (VNB) photoporation is a physical method for intracellular delivery that has gained significant interest in the past decade. It has successfully been used to introduce molecular cargo of diverse nature into different cell types with high throughput and minimal cytotoxicity. For translational purposes, it is important to understand whether and how photoporation affects cell homeostasis. To obtain a comprehensive view on the transcriptional rewiring that takes place after VNB photoporation, we performed a longitudinal shotgun RNA-sequencing experiment. Six hours after photoporation, we found a marked upregulation of LMNA transcripts as well as their protein products, the A-type lamins. At the same time point, we observed a significant increase in several heterochromatin marks, suggesting a global stiffening of the nucleus. These molecular features vanished 24 h after photoporation. Since VNB-induced chromatin condensation was prolonged in LMNA knockout cells, A-type lamins may be required for restoring the nucleus to its original state. Selective depletion of A-type lamins reduced cell viability after VNB photoporation, while pharmacological stimulation of LMNA transcription increased the percentage of successfully transfected cells that survived after photoporation. Therefore, our results suggest that cells respond to VNB photoporation by temporary upregulation of A-type lamins to facilitate their recovery.


2021 ◽  
Author(s):  
Arun Das ◽  
Michael C Schatz

In modern sequencing experiments, identifying the sources of the reads is a crucial need. In metagenomics, where each read comes from one of potentially many members of a community, it can be important to identify the exact species the read is from. In other settings, it is important to distinguish which reads are from the targeted sample and which are from potential contaminants. In both cases, identification of the correct source of a read enables further investigation of relevant reads, while minimizing wasted work. This task is particularly challenging for long reads, which can have a substantial error rate that obscures the origins of each read. Existing tools for the read classification problem are often alignment or index-based, but such methods can have large time and/or space overheads. In this work, we investigate the effectiveness of several sampling and sketching-based approaches for read classification. In these approaches, a chosen sampling or sketching algorithm is used to generate a reduced representation (a "screen") of potential source genomes for a query readset before reads are streamed in and compared against this screen. Using a query read's similarity to the elements of the screen, the methods predict the source of the read. Such an approach requires limited pre-processing, stores and works with only a subset of the input data, and is able to perform classification with a high degree of accuracy. The sampling and sketching approaches investigated include uniform sampling, methods based on MinHash and its weighted and order variants, a minimizer-based technique, and a novel clustering-based sketching approach. We demonstrate the effectiveness of these techniques both in identifying the source microbial genomes for reads from a metagenomic long read sequencing experiment, and in distinguishing between long reads from organisms of interest and potential contaminant reads. We then compare these approaches to existing alignment, index and sketching-based tools for read classification, and demonstrate how such a method is a viable alternative for determining the source of query reads. Finally, we present a reference implementation of these approaches at https://github.com/arun96/sketching.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Weilin Sun ◽  
Gang Ma ◽  
Li Zhang ◽  
Pengliang Wang ◽  
Nannan Zhang ◽  
...  

AbstractADAMTS9 belongs to the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) protein family, and its expression is frequently silenced due to promoter hypermethylation in various human cancers. However, the underlying mechanisms remain largely unknown. In this study, we investigated the inhibitory effects of ADAMTS9 on gastric cancer (GC) cells. We initially examined ADAMTS9 protein level in 135 GC and adjacent normal tissue pairs, showing that ADAMTS9 was strikingly decreased in the malignant specimens and patients with low ADAMTS9 expression exhibited more malignant phenotypes and poorer outcome. ADAMTS9 expression was restored in AGS and BGC-823 cells, which then markedly suppressed cellular viability and motility in vitro and in vivo. As ADAMTS9 was enriched in the nuclei of gastric mucosal cells, RNA-sequencing experiment showed that ADAMTS9 significantly altered gene expression profile in BGC-823 cells. Additionally, DNA methyltransferase 3α (DNMT3A) was identified to be responsible for the hypermethylation of ADAMTS9 promoter, and this methyltransferase was ubiquitinated by ring finger protein 180 (RNF180) and then subject to proteasome-mediated degradation. In conclusion, we uncovered RNF180/DNMT3A/ADAMTS9 axis in GC cells and showed how the signaling pathway affected GC cells.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 818
Author(s):  
Kamil A. Kobak ◽  
Paweł Franczuk ◽  
Justyna Schubert ◽  
Magdalena Dzięgała ◽  
Monika Kasztura ◽  
...  

Cardiac fibroblasts and cardiomyocytes are the main cells involved in the pathophysiology of myocarditis (MCD). These cells are especially sensitive to changes in iron homeostasis, which is extremely important for the optimal maintenance of crucial cellular processes. However, the exact role of iron status in the pathophysiology of MCD remains unknown. We cultured primary human cardiomyocytes (hCM) and cardiofibroblasts (hCF) with sera from acute MCD patients and healthy controls to mimic the effects of systemic inflammation on these cells. Next, we performed an initial small-scale (n = 3 per group) RNA sequencing experiment to investigate the global cellular response to the exposure on sera. In both cell lines, transcriptomic data analysis revealed many alterations in gene expression, which are related to disturbed canonical pathways and the progression of cardiac diseases. Moreover, hCM exhibited changes in the iron homeostasis pathway. To further investigate these alterations in sera-treated cells, we performed a larger-scale (n = 10 for controls, n = 18 for MCD) follow-up study and evaluated the expression of genes involved in iron metabolism. In both cell lines, we demonstrated an increased expression of transferrin receptor 1 (TFR1) and ferritin in MCD serum-treated cells as compared to controls, suggesting increased iron demand. Furthermore, we related TFR1 expression with the clinical profile of patients and showed that greater iron demand in sera-treated cells was associated with higher inflammation score (interleukin 6 (IL-6), C-reactive protein (CRP)) and advanced neurohormonal activation (NT-proBNP) in patients. Collectively, our data suggest that the malfunctioning of cardiomyocytes and cardiofibroblasts in the course of MCD might be related to alterations in the iron homeostasis.


Author(s):  
M.F. Mengist ◽  
S.L. Byrne ◽  
D. Griffin ◽  
D. Milbourne

Potato plants can accumulate a high amount of cadmium (Cd) in the tuber when grown in soils rich in Cd. The molecular mechanisms governing Cd accumulation in the potato plant are poorly understood. Here we performed an RNA-sequencing experiment to identify genes differentially expressed in the leaf and root of potato during early stages of Cd exposure. Results did not identify any significant transcriptional response in leaves under 1 or 5 mg kg−1 Cd after 72 h. However, in the roots we did identify 2,846 genes that were significantly differentially expressed after 72 h between plants grown in 5 mg kg−1 Cd and controls. These included genes involved in photosynthesis and autophagy being up-regulated, and genes involved in intracellular transport being down-regulated. This study is the first report on the transcriptome-wide response of potato to Cd stress, providing insight into the molecular mechanisms involved in the response.


2021 ◽  
Vol 22 (6) ◽  
pp. 3094
Author(s):  
Rita Zrenner ◽  
Bart Verwaaijen ◽  
Franziska Genzel ◽  
Burkhardt Flemer ◽  
Rita Grosch

Rhizoctonia solani is the causer of black scurf disease on potatoes and is responsible for high economical losses in global agriculture. In order to increase the limited knowledge of the plants’ molecular response to this pathogen, we inoculated potatoes with R. solani AG3-PT isolate Ben3 and carried out RNA sequencing with total RNA extracted from potato sprouts at three and eight days post inoculation (dpi). In this dual RNA-sequencing experiment, the necrotrophic lifestyle of R. solani AG3-PT during early phases of interaction with its host has already been characterised. Here the potato plants’ comprehensive transcriptional response to inoculation with R. solani AG3 was evaluated for the first time based on significantly different expressed plant genes extracted with DESeq analysis. Overall, 1640 genes were differentially expressed, comparing control (−Rs) and with R. solani AG3-PT isolate Ben3 inoculated plants (+Rs). Genes involved in the production of anti-fungal proteins and secondary metabolites with antifungal properties were significantly up regulated upon inoculation with R. solani. Gene ontology (GO) terms involved in the regulation of hormone levels (i.e., ethylene (ET) and jasmonic acid (JA) at 3 dpi and salicylic acid (SA) and JA response pathways at 8 dpi) were significantly enriched. Contrastingly, the GO term “response to abiotic stimulus” was down regulated at both time points analysed. These results may support future breeding efforts toward the development of cultivars with higher resistance level to black scurf disease or the development of new control strategies.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nicholas Stoler ◽  
Anton Nekrutenko

Abstract Sequencing technology has achieved great advances in the past decade. Studies have previously shown the quality of specific instruments in controlled conditions. Here, we developed a method able to retroactively determine the error rate of most public sequencing datasets. To do this, we utilized the overlaps between reads that are a feature of many sequencing libraries. With this method, we surveyed 1943 different datasets from seven different sequencing instruments produced by Illumina. We show that among public datasets, the more expensive platforms like HiSeq and NovaSeq have a lower error rate and less variation. But we also discovered that there is great variation within each platform, with the accuracy of a sequencing experiment depending greatly on the experimenter. We show the importance of sequence context, especially the phenomenon where preceding bases bias the following bases toward the same identity. We also show the difference in patterns of sequence bias between instruments. Contrary to expectations based on the underlying chemistry, HiSeq X Ten and NovaSeq 6000 share notable exceptions to the preceding-base bias. Our results demonstrate the importance of the specific circumstances of every sequencing experiment, and the importance of evaluating the quality of each one.


Author(s):  
A.M. Mukhin ◽  
M.A. Genaev ◽  
D.A. Rasskazov ◽  
S.A. Lashin ◽  
D.A. Afonnikov

The transcriptome sequencing experiment (RNA-seq) has become almost a routine procedure for studying both model organisms and crops. As a result of bioinformatics processing of such experimental output, huge heterogeneous data are obtained, representing nucleotide sequences of transcripts, amino acid sequences, and their structural and functional annotation. It is important to present the data obtained to a wide range of researchers in the form of databases. This article proposes a hybrid approach to creating molecular genetic databases that contain information about transcript sequences and their structural and functional annotation. The essence of the approach consists in the simultaneous storing both structured and weakly structured data in the database. The technology was used to implement a database of transcriptomes of agricultural plants. This paper discusses the features of implementing this approach and examples of generating both simple and complex queries to such a database in the SQL language. The OORT database is freely available at https://oort.cytogen.ru/.


2020 ◽  
Author(s):  
Davide Vacca ◽  
Antonino Fiannaca ◽  
Fabio Tramuto ◽  
Valeria Cancila ◽  
Laura La Paglia ◽  
...  

ABSTRACTBackgroundIn consideration of the increasing prevalence of COVID-19 cases in several countries and the resulting demand for unbiased sequencing approaches, we performed a direct RNA sequencing experiment using critical oropharyngeal swab samples collected from Italian patients infected with SARS-CoV-2 from the Palermo region in Sicily.MethodsHere, we identified the sequences SARS-CoV-2 directly in RNA extracted from critical samples using the Oxford Nanopore MinION technology without prior cDNA retro-transcription.ResultsUsing an appropriate bioinformatics pipeline, we could identify mutations in the nucleocapisid (N) gene, which have been reported previously in studies conducted in other countries.ConclusionTo the best of our knowledge, the technique used in this study has not been used for SARS-CoV-2 detection previously owing to the difficulties in the extraction of RNA of sufficient quantity and quality from routine oropharyngeal swabs.Despite these limitations, this approach provides the advantages of true native RNA sequencing, and does not include amplification steps that could introduce systematic errors.This study can provide novel information relevant to the current strategies adopted in SARS-CoV-2 next-generation sequencing.We deposited the gene sequence in the NCBI database under the following URL:https://www.ncbi.nlm.nih.gov/nuccore/MT457389


Sign in / Sign up

Export Citation Format

Share Document