scholarly journals Pathogen effector recognition-dependent association of NRG1 with EDS1 and SAG101 in TNL receptor immunity

2020 ◽  
Author(s):  
Xinhua Sun ◽  
Dmitry Lapin ◽  
Joanna M. Feehan ◽  
Sara C. Stolze ◽  
Katharina Kramer ◽  
...  

Plants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 "helper" NLRs (RNLs), cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). However, the mechanism of RNL/ EDS1 family protein cooperation is poorly understood. Here, we provide genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition dependent association of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex associates with NRG1, and EDS1-PAD4 associates with ADR1, only in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) are required to execute TNL receptor defence signalling.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinhua Sun ◽  
Dmitry Lapin ◽  
Joanna M. Feehan ◽  
Sara C. Stolze ◽  
Katharina Kramer ◽  
...  

AbstractPlants utilise intracellular nucleotide-binding, leucine-rich repeat (NLR) immune receptors to detect pathogen effectors and activate local and systemic defence. NRG1 and ADR1 “helper” NLRs (RNLs) cooperate with enhanced disease susceptibility 1 (EDS1), senescence-associated gene 101 (SAG101) and phytoalexin-deficient 4 (PAD4) lipase-like proteins to mediate signalling from TIR domain NLR receptors (TNLs). The mechanism of RNL/EDS1 family protein cooperation is not understood. Here, we present genetic and molecular evidence for exclusive EDS1/SAG101/NRG1 and EDS1/PAD4/ADR1 co-functions in TNL immunity. Using immunoprecipitation and mass spectrometry, we show effector recognition-dependent interaction of NRG1 with EDS1 and SAG101, but not PAD4. An EDS1-SAG101 complex interacts with NRG1, and EDS1-PAD4 with ADR1, in an immune-activated state. NRG1 requires an intact nucleotide-binding P-loop motif, and EDS1 a functional EP domain and its partner SAG101, for induced association and immunity. Thus, two distinct modules (NRG1/EDS1/SAG101 and ADR1/EDS1/PAD4) mediate TNL receptor defence signalling.


2020 ◽  
Vol 33 (2) ◽  
pp. 308-319 ◽  
Author(s):  
Stephen Bolus ◽  
Eduard Akhunov ◽  
Gitta Coaker ◽  
Jorge Dubcovsky

Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR Sr35, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after Agrobacterium-mediated transient expression in Nicotiana benthamiana. Expression of Sr35 in N. benthamiana leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through Agrobacterium-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Science ◽  
2020 ◽  
Vol 370 (6521) ◽  
pp. eabd9993 ◽  
Author(s):  
Raoul Martin ◽  
Tiancong Qi ◽  
Haibo Zhang ◽  
Furong Liu ◽  
Miles King ◽  
...  

Plants and animals detect pathogen infection using intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) that directly or indirectly recognize pathogen effectors and activate an immune response. How effector sensing triggers NLR activation remains poorly understood. Here we describe the 3.8-angstrom-resolution cryo–electron microscopy structure of the activated ROQ1 (recognition of XopQ 1), an NLR native to Nicotiana benthamiana with a Toll-like interleukin-1 receptor (TIR) domain bound to the Xanthomonaseuvesicatoria effector XopQ (Xanthomonas outer protein Q). ROQ1 directly binds to both the predicted active site and surface residues of XopQ while forming a tetrameric resistosome that brings together the TIR domains for downstream immune signaling. Our results suggest a mechanism for the direct recognition of effectors by NLRs leading to the oligomerization-dependent activation of a plant resistosome and signaling by the TIR domain.


2017 ◽  
Vol 114 (10) ◽  
pp. E2053-E2062 ◽  
Author(s):  
Marc T. Nishimura ◽  
Ryan G. Anderson ◽  
Karen A. Cherkis ◽  
Terry F. Law ◽  
Qingli L. Liu ◽  
...  

Detection of pathogens by plants is mediated by intracellular nucleotide-binding site leucine-rich repeat (NLR) receptor proteins. NLR proteins are defined by their stereotypical multidomain structure: an N-terminal Toll–interleukin receptor (TIR) or coiled-coil (CC) domain, a central nucleotide-binding (NB) domain, and a C-terminal leucine-rich repeat (LRR). The plant innate immune system contains a limited NLR repertoire that functions to recognize all potential pathogens. We isolated Response to the bacterial type III effector protein HopBA1 (RBA1), a gene that encodes a TIR-only protein lacking all other canonical NLR domains. RBA1 is sufficient to trigger cell death in response to HopBA1. We generated a crystal structure for HopBA1 and found that it has similarity to a class of proteins that includes esterases, the heme-binding protein ChaN, and an uncharacterized domain ofPasteurella multocidatoxin. Self-association, coimmunoprecipitation with HopBA1, and function of RBA1 require two previously identified TIR–TIR dimerization interfaces. Although previously described as distinct in other TIR proteins, in RBA1 neither of these interfaces is sufficient when the other is disrupted. These data suggest that oligomerization of RBA1 is required for function. Our identification of RBA1 demonstrates that “truncated” NLRs can function as pathogen sensors, expanding our understanding of both receptor architecture and the mechanism of activation in the plant immune system.


2021 ◽  
Vol 22 (9) ◽  
pp. 4709
Author(s):  
Quang-Minh Nguyen ◽  
Arya Bagus Boedi Iswanto ◽  
Geon Hui Son ◽  
Sang Hee Kim

Plants rely on multiple immune systems to protect themselves from pathogens. When pattern-triggered immunity (PTI)—the first layer of the immune response—is no longer effective as a result of pathogenic effectors, effector-triggered immunity (ETI) often provides resistance. In ETI, host plants directly or indirectly perceive pathogen effectors via resistance proteins and launch a more robust and rapid defense response. Resistance proteins are typically found in the form of nucleotide-binding and leucine-rich-repeat-containing receptors (NLRs). Upon effector recognition, an NLR undergoes structural change and associates with other NLRs. The dimerization or oligomerization of NLRs signals to downstream components, activates “helper” NLRs, and culminates in the ETI response. Originally, PTI was thought to contribute little to ETI. However, most recent studies revealed crosstalk and cooperation between ETI and PTI. Here, we summarize recent advancements in our understanding of the ETI response and its components, as well as how these components cooperate in the innate immune signaling pathways. Based on up-to-date accumulated knowledge, this review provides our current perspective of potential engineering strategies for crop protection.


Author(s):  
Raoul Martin ◽  
Tiancong Qi ◽  
Haibo Zhang ◽  
Furong Liu ◽  
Miles King ◽  
...  

AbstractPlants and animals detect pathogen infection via intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) that directly or indirectly recognize pathogen effectors and activate an immune response. How effector sensing triggers NLR activation remains poorly understood. Here we describe the 3.8 Å resolution cryo-electron microscopy structure of the activated Roq1, an NLR native to Nicotiana benthamiana with a Toll-like interleukin-1 receptor (TIR) domain, bound to the Xanthomonas effector XopQ. Roq1 directly binds to both the predicted active site and surface residues of XopQ while forming a tetrameric resistosome that brings together the TIR domains for downstream immune signaling. Our results suggest a mechanism for the direct recognition of effectors by NLRs leading to the oligomerization-dependent activation of a plant resistosome and signaling by the TIR domain.One Sentence SummaryVisualization of an activated plant immune receptor that triggers the immune response upon pathogen recognition.


Author(s):  
K. Oikawa ◽  
K. Fujisaki ◽  
M. Shimizu ◽  
T. Takeda ◽  
H. Saitoh ◽  
...  

AbstractPlant intracellular nucleotide-binding domain and leucine-rich repeat-containing (NLR) immune receptors have a complex architecture. They can include noncanonical integrated domains that are thought to have evolved from host targets of pathogen effectors to serve as pathogen baits. However, the functions of host proteins with similarity to NLR integrated domains and the extent to which they are targeted by pathogen effectors remain largely unknown. Here, we show that the blast fungus effector AVR-Pik binds a subset of related rice proteins containing a heavy metal-associated (HMA) domain, one of the domains that has repeatedly integrated into plant NLR immune receptors. We find that AVR-Pik binding stabilizes the rice HMA proteins OsHIPP19 and OsHIPP20. Knockout of OsHIPP20 causes enhanced disease resistance towards the blast pathogen, indicating that OsHIPP20 is a susceptibility gene (S-gene). We propose that AVR-Pik has evolved to bind HMA domain proteins and co-opt their function to suppress immunity. Yet this binding carries a trade-off, it triggers immunity in plants carrying NLR receptors with integrated HMA domains.


2021 ◽  
Author(s):  
Motoki Shimizu ◽  
Akiko Hirabuchi ◽  
Yu Sugihara ◽  
Akira Abe ◽  
Takumi Takeda ◽  
...  

AbstractThroughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, and is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal–associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained trans-species in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to recognize AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.Significance statementPlants have evolved sophisticated defense mechanisms to fend off pathogens. Plant nucleotide-binding leucine-rich repeat receptor (NLR) proteins play crucial roles in detecting pathogen molecules inside plant cells and mounting defense responses. Here, we identified the Pias gene from rice, which encodes the NLR pair Pias-1 “helper” and Pias-2 “sensor.” These proteins function together to detect the pathogen molecule AVR-Pias of Magnaporthe oryzae and defend against rice blast disease. Pias is allelic to the previously reported Pia gene. A comparison of Pias/Pia alleles among Oryza species showed that Pias/Pia helper is evolutionarily and functionally conserved, whereas Pias/Pia sensor shows highly dynamic evolution, with various host domains integrated into similar positions, allowing it to detect a wide variety of pathogen molecules.


2019 ◽  
Author(s):  
JC De la Concepcion ◽  
M Franceschetti ◽  
R Terauchi ◽  
S Kamoun ◽  
MJ Banfield

AbstractPlant NLR receptors detect pathogen effectors and initiate an immune response. Since their discovery, NLRs have been the focus of protein engineering to improve disease resistance. However, this has proven challenging, in part due to their narrow response specificity. Here, we used structure-guided engineering to expand the response profile of the rice NLR Pikp to variants of the rice blast pathogen effector AVR-Pik. A mutation located within an effector binding interface of the integrated Pikp-HMA domain increased the binding affinity for AVR-Pik variants in vitro and in vivo. This translates to an expanded cell death response to AVR-Pik variants previously unrecognized by Pikp in planta. Structures of the engineered Pikp-HMA in complex with AVR-Pik variants revealed the mechanism of expanded recognition. These results provide a proof-of-concept that protein engineering can improve the utility of plant NLR receptors where direct interaction between effectors and NLRs is established, particularly via integrated domains.


2018 ◽  
Vol 115 (41) ◽  
pp. 10218-10227 ◽  
Author(s):  
Yan Ma ◽  
Hailong Guo ◽  
Lanxi Hu ◽  
Paula Pons Martinez ◽  
Panagiotis N. Moschou ◽  
...  

Plant intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors often function in pairs to detect pathogen effectors and activate defense. The Arabidopsis RRS1-R–RPS4 NLR pair recognizes the bacterial effectors AvrRps4 and PopP2 via an integrated WRKY transcription factor domain in RRS1-R that mimics the effector’s authentic targets. How the complex activates defense upon effector recognition is unknown. Deletion of the WRKY domain results in an RRS1 allele that triggers constitutive RPS4-dependent defense activation, suggesting that in the absence of effector, the WRKY domain contributes to maintaining the complex in an inactive state. We show the WRKY domain interacts with the adjacent domain 4, and that the inactive state of RRS1 is maintained by WRKY–domain 4 interactions before ligand detection. AvrRps4 interaction with the WRKY domain disrupts WRKY–domain 4 association, thus derepressing the complex. PopP2-triggered activation is less easily explained by such disruption and involves the longer C-terminal extension of RRS1-R. Furthermore, some mutations in RPS4 and RRS1 compromise PopP2 but not AvrRps4 recognition, suggesting that AvrRps4 and PopP2 derepress the complex differently. Consistent with this, a “reversibly closed” conformation of RRS1-R, engineered in a method exploiting the high affinity of colicin E9 and Im9 domains, reversibly loses AvrRps4, but not PopP2 responsiveness. Following RRS1 derepression, interactions between domain 4 and the RPS4 C-terminal domain likely contribute to activation. Simultaneous relief of autoinhibition and activation may contribute to defense activation in many immune receptors.


Sign in / Sign up

Export Citation Format

Share Document