scholarly journals Multinucleation Associated DNA Damage causes quiescence despite compromised p53

2020 ◽  
Author(s):  
Madeleine Hart ◽  
Sophie D Adams ◽  
Viji M Draviam

ABSTRACTNuclear atypia is one of the earliest hallmarks of cancer progression. How distinct forms of nuclear atypia differently impact cell fate is not understood at the molecular level. Here, we perform single-cell tracking studies to determine the immediate and long-term impact of multinucleation or misshapen nuclei and reveal a significant difference between multinucleation and micronucleation, a catastrophic nuclear atypia known to promote genomic rearrangements and tumour heterogeneity. Tracking the fate of newborn cells exhibiting various nuclear atypia shows that multinucleation, unlike other forms of nuclear atypia, blocks proliferation in p53-compromised cells. Because compromised p53 is seen in over 50% of cancers, we explored how multinucleation blocks proliferation and promotes quiescence. Multinucleation increases 53BP1-decorated nuclear bodies (DNA damage repair platforms), along with a heterogeneous reduction in transcription and protein accumulation across the multi-nucleated compartments. Importantly, Multinucleation Associated DNA Damage (MADD) associated 53BP1-bodies remain unresolved for days, despite an intact NHEJ machinery that repairs laser-induced DNA damage within minutes. This persistent MADD signalling blocks the onset of DNA replication and is associated with driving proliferative G1 cells into quiescence, revealing a novel replication stress independent cell cycle arrest caused by mitotic lesions. These findings call for segregating protective and prohibitive nuclear atypia to inform therapeutic approaches aimed at limiting tumour heterogeneity.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Madeleine Hart ◽  
Sophie D. Adams ◽  
Viji M. Draviam

AbstractNuclear atypia is one of the hallmarks of cancers. Here, we perform single-cell tracking studies to determine the immediate and long-term impact of nuclear atypia. Tracking the fate of newborn cells exhibiting nuclear atypia shows that multinucleation, unlike other forms of nuclear atypia, blocks proliferation in p53-compromised cells. Because ~50% of cancers display compromised p53, we explored how multinucleation blocks proliferation. Multinucleation increases 53BP1-decorated nuclear bodies (DNA damage repair platforms), along with a heterogeneous reduction in transcription and protein accumulation across the multi-nucleated compartments. Multinucleation Associated DNA Damage associated with 53BP1-bodies remains unresolved for days, despite an intact NHEJ machinery that repairs laser-induced DNA damage within minutes. Persistent DNA damage, a DNA replication block, and reduced phospho-Rb, reveal a novel replication stress independent cell cycle arrest caused by mitotic lesions. These findings call for segregating protective and prohibitive nuclear atypia to inform therapeutic approaches aimed at limiting tumour heterogeneity.


2011 ◽  
Vol 193 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Jeanine A. Harrigan ◽  
Rimma Belotserkovskaya ◽  
Julia Coates ◽  
Daniela S. Dimitrova ◽  
Sophie E. Polo ◽  
...  

Chromosomal deletions and rearrangements in tumors are often associated with common fragile sites, which are specific genomic loci prone to gaps and breaks in metaphase chromosomes. Common fragile sites appear to arise through incomplete DNA replication because they are induced after partial replication inhibition by agents such as aphidicolin. Here, we show that in G1 cells, large nuclear bodies arise that contain p53 binding protein 1 (53BP1), phosphorylated H2AX (γH2AX), and mediator of DNA damage checkpoint 1 (MDC1), as well as components of previously characterized OPT (Oct-1, PTF, transcription) domains. Notably, we find that incubating cells with low aphidicolin doses increases the incidence and number of 53BP1-OPT domains in G1 cells, and by chromatin immunoprecipitation and massively parallel sequencing analysis of γH2AX, we demonstrate that OPT domains are enriched at common fragile sites. These findings invoke a model wherein incomplete DNA synthesis during S phase leads to a DNA damage response and formation of 53BP1-OPT domains in the subsequent G1.


2020 ◽  
Vol 20 ◽  
Author(s):  
Helen Shiphrah Vethakanraj ◽  
Niveditha Chandrasekaran ◽  
Ashok Kumar Sekar

: Acid ceramidase (AC), the key enzyme of the ceramide metabolic pathway hydrolyzes pro-apoptotic ceramide to sphingosine, which by the action of sphingosine-1-kinase is metabolized to mitogenic sphingosine-1-phosphate. The intracellular level of AC determines ceramide/sphingosine-1-phosphate rheostat which in turn decides the cell fate. The upregulated AC expression during cancerous condition acts as a “double-edged sword” by converting pro-apoptotic ceramide to anti-apoptotic sphingosine-1-phosphate, wherein on one end, the level of ceramide is decreased and on the other end, the level of sphingosine-1-phosphate is increased, thus altogether aggravating the cancer progression. In addition, cancer cells with upregulated AC expression exhibited increased cell proliferation, metastasis, chemoresistance, radioresistance and numerous strategies were developed in the past to effectively target the enzyme. Gene silencing and pharmacological inhibition of AC sensitized the resistant cells to chemo/radiotherapy thereby promoting cell death. The core objective of this review is to explore AC mediated tumour progression and the potential role of AC inhibitors in various cancer cell lines/models.


DNA Repair ◽  
2020 ◽  
Vol 96 ◽  
pp. 102971 ◽  
Author(s):  
Shantanu Gupta ◽  
Daner A. Silveira ◽  
José Carlos M. Mombach
Keyword(s):  

2019 ◽  
Vol 116 (39) ◽  
pp. 19552-19562 ◽  
Author(s):  
Justine Sitz ◽  
Sophie Anne Blanchet ◽  
Steven F. Gameiro ◽  
Elise Biquand ◽  
Tia M. Morgan ◽  
...  

High-risk human papillomaviruses (HR-HPVs) promote cervical cancer as well as a subset of anogenital and head and neck cancers. Due to their limited coding capacity, HPVs hijack the host cell’s DNA replication and repair machineries to replicate their own genomes. How this host–pathogen interaction contributes to genomic instability is unknown. Here, we report that HPV-infected cancer cells express high levels of RNF168, an E3 ubiquitin ligase that is critical for proper DNA repair following DNA double-strand breaks, and accumulate high numbers of 53BP1 nuclear bodies, a marker of genomic instability induced by replication stress. We describe a mechanism by which HPV E7 subverts the function of RNF168 at DNA double-strand breaks, providing a rationale for increased homology-directed recombination in E6/E7-expressing cervical cancer cells. By targeting a new regulatory domain of RNF168, E7 binds directly to the E3 ligase without affecting its enzymatic activity. As RNF168 knockdown impairs viral genome amplification in differentiated keratinocytes, we propose that E7 hijacks the E3 ligase to promote the viral replicative cycle. This study reveals a mechanism by which tumor viruses reshape the cellular response to DNA damage by manipulating RNF168-dependent ubiquitin signaling. Importantly, our findings reveal a pathway by which HPV may promote the genomic instability that drives oncogenesis.


2017 ◽  
Vol 1 (5) ◽  
pp. 509-515
Author(s):  
Sandra Demaria ◽  
Claire Vanpouille-Box

Genomic instability is a hallmark of neoplastic transformation that leads to the accumulation of mutations, and generates a state of replicative stress in neoplastic cells associated with dysregulated DNA damage repair (DDR) responses. The importance of increasing mutations in driving cancer progression is well established, whereas relatively little attention has been devoted to the DNA displaced to the cytosol of cancer cells, a byproduct of genomic instability and of the ensuing DDR response. The presence of DNA in the cytosol promotes the activation of viral defense pathways in all cells, leading to activation of innate and adaptive immune responses. In fact, the improper accumulation of cytosolic DNA in normal cells is known to drive severe autoimmune pathology. Thus, cancer cells must evade cytoplasmic DNA detection pathways to avoid immune-mediated destruction. The main sensor for cytoplasmic DNA is the cyclic GMP–AMP synthase, cGAS. Upon activation by cytosolic DNA, cGAS catalyzes the formation of the second messenger cGAMP, which activates STING (stimulator of IFN genes), leading to the production of type I interferon (IFN-I). IFN-I is a critical effector of cell-mediated antiviral and antitumor immunity, and its production by cancer cells can be subverted by several mechanisms. However, the key upstream regulator of cytosolic DNA-mediated immune stimulation is the DNA exonuclease 3′-repair exonuclease 1 (TREX1). Here, we will discuss evidence in support of a role of TREX1 as an immune checkpoint that, when up-regulated, hinders the development of antitumor immune responses.


2021 ◽  
Vol 7 (3) ◽  
pp. eabe3882
Author(s):  
Jenny F. Nathans ◽  
James A. Cornwell ◽  
Marwa M. Afifi ◽  
Debasish Paul ◽  
Steven D. Cappell

The G1-S checkpoint is thought to prevent cells with damaged DNA from entering S phase and replicating their DNA and efficiently arrests cells at the G1-S transition. Here, using time-lapse imaging and single-cell tracking, we instead find that DNA damage leads to highly variable and divergent fate outcomes. Contrary to the textbook model that cells arrest at the G1-S transition, cells triggering the DNA damage checkpoint in G1 phase route back to quiescence, and this cellular rerouting can be initiated at any point in G1 phase. Furthermore, we find that most of the cells receiving damage in G1 phase actually fail to arrest and proceed through the G1-S transition due to persistent cyclin-dependent kinase (CDK) activity in the interval between DNA damage and induction of the CDK inhibitor p21. These observations necessitate a revised model of DNA damage response in G1 phase and indicate that cells have a G1 checkpoint.


2003 ◽  
Vol 89 (3) ◽  
pp. 305-310 ◽  
Author(s):  
Volkan Baltaci ◽  
Semra Sardas ◽  
Bulent Aytac ◽  
Sami Cakar ◽  
Ali Esat Karakaya

Aims, Background and Study Design Few studies have investigated the karyotypes of colorectal carcinomas with emphasis on the correlation between cytogenetic findings and clinicopathologic features. The aim of our study involving 20 colorectal adenocarcinomas was to determine their genomic alterations at the chromosomal level by correlating the cytogenetic findings with the extent of DNA damage and clinicopathologic parameters and to compare the results with those of healthy controls. Results Cytogenetic evaluation of patients and controls revealed 10 abnormal karyotypes in patients with adenocarcinomas located in the rectum, sigmoid and rectosigmoid regions. Four had numerical and six had structural abnormalities. Conclusions Statistical analysis revealed a significant difference compared with controls (P <0.01). The karyotypes and the extent of DNA damage assessed by the comet assay were also significantly correlated with tumor stage (P <0.01) using the Kruskal-Wallis non-parametric test, while no statistical significance was observed in relation to patient age and smoking.


2021 ◽  
Author(s):  
Samuel Bowerman ◽  
Jyothi Mahadevan ◽  
Philip Benson ◽  
Johannes Rudolph ◽  
Karolin Luger

Cells are exposed to a plethora of influences that can cause damage to DNA and alter the genome, often with detrimental consequences for health. Cells mitigate this damage through a variety of repair protein pathways, and accurate measurement of the accumulation, action, and dissipation timescales of these repair proteins is required to fully understand the DNA damage response. Recently, we described the Q-FADD (Quantitation of Fluorescence Accumulation after DNA Damage) method, which enhances the analytical power of the widely used laser microirradiation technique. In that study, Q-FADD and its preprocessing operations required licensed software and a significant amount of user overhead to find the model of best fit. Here, we present "qFADD.py", an open-source implementation of the Q-FADD algorithm that is available as both a stand-alone software package and on a publicly accessible webserver (https://qfadd.colorado.edu/). Furthermore, we describe significant improvements to the fitting and preprocessing methods that include corrections for nuclear drift and an automated grid-search for the model of best fit. To improve statistical rigor, the grid-search algorithm also includes automated simulation of replicates. As an example, we discuss the recruitment dynamics of the signaling protein PARP1 to DNA damage sites, and we show how to compare different populations of qFADD.py models.


Sign in / Sign up

Export Citation Format

Share Document