scholarly journals Molecular Noise-Filtering in the β-adrenergic Signaling Network by Phospholamban Pentamers

2020 ◽  
Author(s):  
Daniel Koch ◽  
Alexander Alexandrovich ◽  
Florian Funk ◽  
Joachim P. Schmitt ◽  
Mathias Gautel

AbstractPhospholamban (PLN) is an important regulator of calcium handling in cardiomyocytes due to its ability to inhibit the sarco(endo)plasmic reticulum calcium-ATPase (SERCA). β-adrenergic stimulation reverses SERCA inhibition via PLN phosphorylation and facilitates fast calcium reuptake. PLN also forms pentamers whose physiological significance has remained elusive. Using biochemical experiments and mathematical modeling, we show that pentamers regulate both the dynamics and steady-state levels of monomer phosphorylation. Substrate competition by pentamers and a feed-forward loop involving inhibitor-1 can delay monomer phosphorylation by protein kinase A (PKA). Steady-state phosphorylation of PLN is predicted to be bistable due to cooperative dephosphorylation of pentamers. Both effects act as complementary noise-filters which can reduce the effect of random fluctuations in PKA activity. Pentamers thereby ensure consistent monomer phosphorylation and SERCA activity in spite of noisy upstream signals. Preliminary analyses suggest that the PLN mutation R14del could impair noise-filtering, offering a new perspective on how this mutation causes cardiac arrhythmias.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2017 ◽  
Vol 19 (6) ◽  
pp. 884-906 ◽  
Author(s):  
Viktoria C. E. Langer ◽  
Wolfgang Maennig ◽  
Felix Richter

The awarding of the Olympic Games to a certain city or the announcement of a city’s Olympic bid may be considered as a news shock that affects agents’ market expectations. A news shock implies potential impacts on the dynamic adjustment process that change not only the volatility but also the long-run steady-state levels of endogenous economic variables. In this study, we contribute to and extend previous researchers’ attempts to empirically test for the Olympic Games as a news shock by implementing full structural models and by matching Olympic hosts and bidders to structurally similar countries.


2002 ◽  
Vol 10 (2) ◽  
pp. 93-102 ◽  
Author(s):  
L. Elaine Epperson ◽  
Sandra L. Martin

Hibernators in torpor dramatically reduce their metabolic, respiratory, and heart rates and core body temperature. These extreme physiological conditions are frequently and rapidly reversed during the winter hibernation season via endogenous mechanisms. This phenotype must derive from regulated expression of the hibernator’s genome; to identify its molecular components, a cDNA subtraction was used to enrich for seasonally upregulated mRNAs in liver of golden-mantled ground squirrels. The relative steady-state levels for seven mRNAs identified by this screen, plus five others, were measured and analyzed for seasonal and stage-specific differences using kinetic RT-PCR. Four mRNAs show seasonal upregulation in which all five winter stages differ significantly from and are higher than summer (α2-macroglobulin, apolipoprotein A1, cathepsin H, and thyroxine-binding globulin). One of these mRNAs, α2-macroglobulin, varies during the winter stages with significantly lower levels at late torpor. None of the 12 mRNAs increased during torpor. The implications for these newly recognized upregulated mRNAs for hibernation as well as more global issues of maintaining steady-state levels of mRNA during torpor are discussed.


2009 ◽  
Vol 297 (4) ◽  
pp. H1235-H1242 ◽  
Author(s):  
Gregory S. Hoeker ◽  
Rodolphe P. Katra ◽  
Lance D. Wilson ◽  
Bradley N. Plummer ◽  
Kenneth R. Laurita

Abnormalities in calcium handling have been implicated as a significant source of electrical instability in heart failure (HF). While these abnormalities have been investigated extensively in isolated myocytes, how they manifest at the tissue level and trigger arrhythmias is not clear. We hypothesize that in HF, triggered activity (TA) is due to spontaneous calcium release from the sarcoplasmic reticulum that occurs in an aggregate of myocardial cells (an SRC) and that peak SCR amplitude is what determines whether TA will occur. Calcium and voltage optical mapping was performed in ventricular wedge preparations from canines with and without tachycardia-induced HF. In HF, steady-state calcium transients have reduced amplitude [135 vs. 170 ratiometric units (RU), P < 0.05] and increased duration (252 vs. 229 s, P < 0.05) compared with those of normal. Under control conditions and during β-adrenergic stimulation, TA was more frequent in HF (53% and 93%, respectively) compared with normal (0% and 55%, respectively, P < 0.025). The mechanism of arrhythmias was SCRs, leading to delayed afterdepolarization-mediated triggered beats. Interestingly, the rate of SCR rise was greater for events that triggered a beat (0.41 RU/ms) compared with those that did not (0.18 RU/ms, P < 0.001). In contrast, there was no difference in SCR amplitude between the two groups. In conclusion, TA in HF tissue is associated with abnormal calcium regulation and mediated by the spontaneous release of calcium from the sarcoplasmic reticulum in aggregates of myocardial cells (i.e., an SCR), but importantly, it is the rate of SCR rise rather than amplitude that was associated with TA.


2006 ◽  
Vol 85 (5) ◽  
pp. 452-456 ◽  
Author(s):  
M.M. Zavarella ◽  
O. Gbemi ◽  
J.D. Walters

Non-steroidal anti-inflammatory drugs (NSAIDs) are used to manage pain and inflammatory disorders. We hypothesized that gingival fibroblasts actively accumulate NSAIDs and enhance their levels in gingival connective tissue. Using fluorescence to monitor NSAID transport, we demonstrated that cultured gingival fibroblasts transport naproxen in a saturable, temperature-dependent manner with a Km of 127 μg/mL and a Vmax of 1.42 ng/min/μg protein. At steady state, the intracellular/extracellular concentration ratio was 1.9 for naproxen and 7.2 for ibuprofen. Naproxen transport was most efficient at neutral pH and was significantly enhanced upon cell treatment with TNF-α. In humans, systemically administered naproxen attained steady-state levels of 61.9 μg/mL in blood and 9.4 μg/g in healthy gingival connective tissue, while ibuprofen attained levels of 2.3 μg/mL and 1.5 μg/g, respectively. Thus, gingival fibroblasts possess transporters for NSAIDs that are up-regulated by an inflammatory mediator, but there is no evidence that they contribute to elevated NSAID levels in healthy gingiva.


Sign in / Sign up

Export Citation Format

Share Document