scholarly journals Recognition of a Tandem Lesion by DNA Glycosylases Explored Combining Molecular Dynamics and Machine Learning

2021 ◽  
Author(s):  
Emmanuelle Bignon ◽  
Natacha Gillet ◽  
Chen-Hui Chan ◽  
Tao Jiang ◽  
Antonio Monari ◽  
...  

ABSTRACTThe combination of several closely spaced DNA lesions, which can be induced by a single radical hit, constitutes a hallmark in the DNA damage landscape and radiation chemistry. The occurrence of such tandem base lesions give rise to a strong coupling with the double helix degrees of freedom and induce important structural deformations, in contrast to DNA strands containing a single oxidized nucleobase. Although such complex lesions are known to be refractory to repair by DNA glycosylases, there is still a lack of structural evidence to rationalize these phenomena. In this contribution, we explore, by numerical modeling and molecular simulations, the behavior of the bacterial glycosylase responsible for base excision repair (MutM), specialized in excising oxidatively-damaged defects such as 7,8-dihydro-8-oxoguanine (8-oxoG). The difference in lesion recognition between a simple damage and a tandem lesions featuring an additional abasic site is assessed at atomistic resolution owing to microsecond molecular dynamics simulation and machine learning postprocessing, allowing to extensively pinpoint crucial differences in the interaction patterns of the damaged bases. This work advocates for the use of such high throughput numerical simulations for exploring the complex combinatorial chemistry of tandem DNA lesions repair and more generally multiple damaged sites of the utmost significance in radiation chemistry.

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 709
Author(s):  
Dakshinamurthy Sivakumar ◽  
Sathish-Kumar Mudedla ◽  
Seonghun Jang ◽  
Hyunjun Kim ◽  
Hyunjin Park ◽  
...  

PDE9 inhibitors have been studied to validate their potential to treat diabetes, neurodegenerative disorders, cardiovascular diseases, and erectile dysfunction. In this report, we have selected highly potent previously reported selective PDE9 inhibitors BAY73-6691R, BAY73-6691S, 28r, 28s, 3r, 3s, PF-0447943, PF-4181366, and 4r to elucidate the differences in their interaction patterns in the presence of different metal systems such as Zn/Mg, Mg/Mg, and Zn/Zn. The initial complexes were generated by molecular docking followed by molecular dynamics simulation for 100 ns in triplicate for each system to understand the interactions’ stability. The results were carefully analyzed, focusing on the ligands’ non-bonded interactions with PDE9 in different metal systems.


Author(s):  
Jayashree Biswal ◽  
Prajisha Jayaprakash ◽  
Suresh Kumar Rayala ◽  
Ganesh Venkatraman ◽  
Raghu Rangasamy ◽  
...  

Aim: This study aims to develop and establish a computational model that can identify potent molecules for p21-activating kinase 1 (PAK1). Background: PAK1 is a well-established drug target that has been explored for various therapeutic interventions. Control of this protein requires an indispensable inhibitor to curb the structural changes and subsequent activation of signalling effectors responsible for the progression of diseases, such as cancer, inflammatory, viral, and neurological disorders. Objective: To establish a computational model that could identify active molecules which will further provide a platform for developing potential PAK1 inhibitors. Method: A congeneric series of 27 compounds was considered for this study with Ki (nm) covering a minimum of 3 log range. The compounds were developed based on a previously reported Group-I PAK inhibitor, namely G-5555. The 27 compounds were subjected to the SP and XP mode of docking, to understand the binding mode, its conformation and interaction patterns. To understand the relevance of biological activity from computational approaches, the compounds were scored against generated water maps to obtain WM/MM ΔG binding energy. Moreover, molecular dynamics analysis was performed for the highly active compound, to understand the conformational variability and complex’s stability. We then evaluate the predictable binding pose obtained from the docking studies. Result: From the SP and XP modes of docking, the common interaction pattern with the amino acid residues Arg299 (cation-π), Glu345 (Aromatic hydrogen bond), hinge region Leu347, salt bridges Asp393 and Asp407 was observed, among the congeneric compounds. The interaction pattern was compared with the co-crystal inhibitor FRAX597 of the PAK1 crystal structure (PDB id: 4EQC). The correlation with different docking parameters in the SP and XP modes was insignificant and thereby revealed that the SP and XP’s scoring functions could not predict the active compounds. This was due to the limitations in the docking methodology that neglected the receptor flexibility and desolvation parameters. Hence, to recognise the desolvation and explicit solvent effects, as well as to study the Structure-Activity Relationships (SARs) extensively, WaterMap (WM) calculations were performed on the congeneric compounds. Based on displaceable unfavourable hydration sites (HS) and their associated thermodynamic properties, the WM calculations facilitated to understand the significance of correlation in the folds of activity of highly (19 and 17), moderate (16 and 21) and less active (26 and 25) compounds. Furthermore, the scoring function from WaterMap, namely WM/MM, led to a significant R2 value of 0.72, due to a coupled conjunction with MM treatment and displaced unfavourable waters at the binding site. To check the “optimal binding conformation”, molecular dynamics simulation was carried out with the highly active compound 19 to explain the binding mode, stability, interactions, solvent accessible area, etc., which could support the predicted conformation with bioactive conformation. Conclusion: This study determined the best scoring function, established SARs and predicted active molecules through a computational model. This will contribute towards development of the most potent PAK1 inhibitors.


2019 ◽  
pp. 253-288 ◽  
Author(s):  
Ivan A. Kruglov ◽  
Pavel E. Dolgirev ◽  
Artem R. Oganov ◽  
Arslan B. Mazitov ◽  
Sergey N. Pozdnyakov ◽  
...  

2007 ◽  
Vol 92 (5) ◽  
pp. 1673-1681 ◽  
Author(s):  
Federico Fogolari ◽  
Alessandra Corazza ◽  
Paolo Viglino ◽  
Pierfrancesco Zuccato ◽  
Lidia Pieri ◽  
...  

1986 ◽  
Vol 235 (2) ◽  
pp. 531-536 ◽  
Author(s):  
M Dizdaroglu ◽  
E Holwitt ◽  
M P Hagan ◽  
W F Blakely

OsO4 selectively forms thymine glycol lesions in DNA. In the past, OsO4-treated DNA has been used as a substrate in studies of DNA repair utilizing base-excision repair enzymes such as DNA glycosylases. There is, however, no information available on the chemical identity of other OsO4-induced base lesions in DNA. A complete knowledge of such DNA lesions may be of importance for repair studies. Using a methodology developed recently for characterization of oxidative base damage in DNA, we provide evidence for the formation of cytosine glycol and 5,6-dihydroxycytosine moieties, in addition to thymine glycol, in DNA on treatment with OsO4. For this purpose, samples of OsO4-treated DNA were hydrolysed with formic acid, then trimethylsilylated and analysed by capillary gas chromatography-mass spectrometry. In addition to thymine glycol, 5-hydroxyuracil (isobarbituric acid), 5-hydroxycytosine and 5,6-dihydroxyuracil (isodialuric acid or dialuric acid) were identified in OsO4-treated DNA. It is suggested that 5-hydroxyuracil was formed by formic acid-induced deamination and dehydration of cytosine glycol, which was the actual oxidation product of the cytosine moiety in DNA. 5-Hydroxycytosine obviously resulted from dehydration of cytosine glycol, and 5,6-dihydroxyuracil from deamination of 5,6-dihydroxycytosine. This scheme was supported by the presence of 5-hydroxyuracil, uracil glycol and 5,6-dihydroxyuracil in OsO4-treated cytosine. Treatment of OsO4-treated cytosine with formic acid caused the complete conversion of uracil glycol into 5-hydroxyuracil. The implications of these findings relative to studies of DNA repair are discussed.


2017 ◽  
Vol 114 (48) ◽  
pp. E10379-E10388 ◽  
Author(s):  
Isaac A. Chaim ◽  
Zachary D. Nagel ◽  
Jennifer J. Jordan ◽  
Patrizia Mazzucato ◽  
Le P. Ngo ◽  
...  

The integrity of our DNA is challenged with at least 100,000 lesions per cell on a daily basis. Failure to repair DNA damage efficiently can lead to cancer, immunodeficiency, and neurodegenerative disease. Base excision repair (BER) recognizes and repairs minimally helix-distorting DNA base lesions induced by both endogenous and exogenous DNA damaging agents. Levels of BER-initiating DNA glycosylases can vary between individuals, suggesting that quantitating and understanding interindividual differences in DNA repair capacity (DRC) may enable us to predict and prevent disease in a personalized manner. However, population studies of BER capacity have been limited because most methods used to measure BER activity are cumbersome, time consuming and, for the most part, only allow for the analysis of one DNA glycosylase at a time. We have developed a fluorescence-based multiplex flow-cytometric host cell reactivation assay wherein the activity of several enzymes [four BER-initiating DNA glycosylases and the downstream processing apurinic/apyrimidinic endonuclease 1 (APE1)] can be tested simultaneously, at single-cell resolution, in vivo. Taking advantage of the transcriptional properties of several DNA lesions, we have engineered specific fluorescent reporter plasmids for quantitative measurements of 8-oxoguanine DNA glycosylase, alkyl-adenine DNA glycosylase, MutY DNA glycosylase, uracil DNA glycosylase, and APE1 activity. We have used these reporters to measure differences in BER capacity across a panel of cell lines collected from healthy individuals, and to generate mathematical models that predict cellular sensitivity to methylmethane sulfonate, H2O2, and 5-FU from DRC. Moreover, we demonstrate the suitability of these reporters to measure differences in DRC in multiple pathways using primary lymphocytes from two individuals.


Sign in / Sign up

Export Citation Format

Share Document