scholarly journals In vivo measurements of interindividual differences in DNA glycosylases and APE1 activities

2017 ◽  
Vol 114 (48) ◽  
pp. E10379-E10388 ◽  
Author(s):  
Isaac A. Chaim ◽  
Zachary D. Nagel ◽  
Jennifer J. Jordan ◽  
Patrizia Mazzucato ◽  
Le P. Ngo ◽  
...  

The integrity of our DNA is challenged with at least 100,000 lesions per cell on a daily basis. Failure to repair DNA damage efficiently can lead to cancer, immunodeficiency, and neurodegenerative disease. Base excision repair (BER) recognizes and repairs minimally helix-distorting DNA base lesions induced by both endogenous and exogenous DNA damaging agents. Levels of BER-initiating DNA glycosylases can vary between individuals, suggesting that quantitating and understanding interindividual differences in DNA repair capacity (DRC) may enable us to predict and prevent disease in a personalized manner. However, population studies of BER capacity have been limited because most methods used to measure BER activity are cumbersome, time consuming and, for the most part, only allow for the analysis of one DNA glycosylase at a time. We have developed a fluorescence-based multiplex flow-cytometric host cell reactivation assay wherein the activity of several enzymes [four BER-initiating DNA glycosylases and the downstream processing apurinic/apyrimidinic endonuclease 1 (APE1)] can be tested simultaneously, at single-cell resolution, in vivo. Taking advantage of the transcriptional properties of several DNA lesions, we have engineered specific fluorescent reporter plasmids for quantitative measurements of 8-oxoguanine DNA glycosylase, alkyl-adenine DNA glycosylase, MutY DNA glycosylase, uracil DNA glycosylase, and APE1 activity. We have used these reporters to measure differences in BER capacity across a panel of cell lines collected from healthy individuals, and to generate mathematical models that predict cellular sensitivity to methylmethane sulfonate, H2O2, and 5-FU from DRC. Moreover, we demonstrate the suitability of these reporters to measure differences in DRC in multiple pathways using primary lymphocytes from two individuals.

2020 ◽  
Vol 48 (16) ◽  
pp. 9082-9097 ◽  
Author(s):  
Emilie Lebraud ◽  
Guillaume Pinna ◽  
Capucine Siberchicot ◽  
Jordane Depagne ◽  
Didier Busso ◽  
...  

Abstract One of the most abundant DNA lesions induced by oxidative stress is the highly mutagenic 8-oxoguanine (8-oxoG), which is specifically recognized by 8-oxoguanine DNA glycosylase 1 (OGG1) to initiate its repair. How DNA glycosylases find small non-helix-distorting DNA lesions amongst millions of bases packaged in the chromatin-based architecture of the genome remains an open question. Here, we used a high-throughput siRNA screening to identify factors involved in the recognition of 8-oxoG by OGG1. We show that cohesin and mediator subunits are required for re-localization of OGG1 and other base excision repair factors to chromatin upon oxidative stress. The association of OGG1 with euchromatin is necessary for the removal of 8-oxoG. Mediator subunits CDK8 and MED12 bind to chromatin and interact with OGG1 in response to oxidative stress, suggesting they participate in the recruitment of the DNA glycosylase. The oxidative stress-induced association between the cohesin and mediator complexes and OGG1 reveals an unsuspected function of those complexes in the maintenance of genomic stability.


Archaea ◽  
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Miki Fujii ◽  
Chieri Hata ◽  
Munetada Ukita ◽  
Chie Fukushima ◽  
Chihiro Matsuura ◽  
...  

The oxidation of guanine (G) to 7,8-dihydro-8-oxoguanine (GO) forms one of the major DNA lesions generated by reactive oxygen species (ROS). The GO can be corrected by GO DNA glycosylases (Ogg), enzymes involved in base excision repair (BER). Unrepaired GO induces mismatched base pairing with adenine (A); as a result, the mismatch causes a point mutation, from G paired with cytosine (C) to thymine (T) paired with adenine (A), during DNA replication. Here, we report the characterization of a putative Ogg from the thermoacidophilic archaeonThermoplasma volcanium. The 204-amino acid sequence of the putative Ogg (TVG_RS00315) shares significant sequence homology with the DNA glycosylases ofMethanocaldococcus jannaschii(MjaOgg) andSulfolobus solfataricus(SsoOgg). The six histidine-tagged recombinant TVG_RS00315 protein gene was expressed inEscherichia coliand purified. The Ogg protein is thermostable, with optimal activity near a pH of 7.5 and a temperature of 60°C. The enzyme displays DNA glycosylase, and apurinic/apyrimidinic (AP) lyase activities on GO/N (where N is A, T, G, or C) mismatch; yet it cannot eliminate U from U/G or T from T/G, as mismatch glycosylase (MIG) can. These results indicate that TvoOgg-encodingTVG_RS00315is a member of the Ogg2 family ofT. volcanium.


1998 ◽  
Vol 45 (2) ◽  
pp. 579-586 ◽  
Author(s):  
E Borys ◽  
J T Kuśmierek

The combined action of glycosylases and abasic site-specific endonucleases on damaged bases in DNA results in single strand breaks. In plasmid DNA, as a consequence, the covalently closed circular (ccc) form is converted to the open circular (oc) form, and this can be quantitated by agarose gel electrophoresis. We studied DNA lesions sensitive to E. coli 3-methyladenine-DNA glycosylase II (AlkA) and cloned human N-alkylpurine-DNA glycosylase (ANPG-40) which are known to excise alkylated bases and etheno adducts. pBR322 and pAlk10 plasmids not pretreated with mutagens were cleaved by both glycosylases in the presence of enzymes possessing endonucleolytic activity, which indicates that plasmids contain unknown, endogenously formed adducts. Plasmids pretreated with chloroacetaldehyde, a mutagen forming etheno adducts, exhibited enhanced sensitivity to both glycosylases. Adducts formed by acrolein and croton aldehyde were excised by AlkA, but not by ANPG-40, whereas malondialdehyde adducts were not excised by either glycosylase. Bulky p-benzochinone adducts were not excised by AlkA, however, the plasmid pretreated with this mutagen was incised by endonucleases, possibly without prior generation of an abasic site. These examples show that examination of conformational changes of plasmid DNA can be taken advantage of to study the specificity of N-alkylpurine-DNA-glycosylases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evi Goulielmaki ◽  
Maria Tsekrekou ◽  
Nikos Batsiotos ◽  
Mariana Ascensão-Ferreira ◽  
Eleftheria Ledaki ◽  
...  

AbstractRNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers. XAB2 depletion leads to aberrant intron retention, R-loop formation and DNA damage in cells. Studies in illudin S-treated cells and Csbm/m developing livers reveal that transcription-blocking DNA lesions trigger the release of XAB2 from all RNA targets tested. Immunoprecipitation studies reveal that XAB2 interacts with ERCC1-XPF and XPG endonucleases outside nucleotide excision repair and that the trimeric protein complex binds RNA:DNA hybrids under conditions that favor the formation of R-loops. Thus, XAB2 functionally links the spliceosomal response to DNA damage with R-loop processing with important ramifications for transcription-coupled DNA repair disorders.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Didier Boucher ◽  
Ruvini Kariawasam ◽  
Joshua Burgess ◽  
Adrian Gimenez ◽  
Tristan E. Ocampo ◽  
...  

AbstractMaintenance of genomic stability is critical to prevent diseases such as cancer. As such, eukaryotic cells have multiple pathways to efficiently detect, signal and repair DNA damage. One common form of exogenous DNA damage comes from ultraviolet B (UVB) radiation. UVB generates cyclobutane pyrimidine dimers (CPD) that must be rapidly detected and repaired to maintain the genetic code. The nucleotide excision repair (NER) pathway is the main repair system for this type of DNA damage. Here, we determined the role of the human Single-Stranded DNA Binding protein 2, hSSB2, in the response to UVB exposure. We demonstrate that hSSB2 levels increase in vitro and in vivo after UVB irradiation and that hSSB2 rapidly binds to chromatin. Depletion of hSSB2 results in significantly decreased Replication Protein A (RPA32) phosphorylation and impaired RPA32 localisation to the site of UV-induced DNA damage. Delayed recruitment of NER protein Xeroderma Pigmentosum group C (XPC) was also observed, leading to increased cellular sensitivity to UVB. Finally, hSSB2 was shown to have affinity for single-strand DNA containing a single CPD and for duplex DNA with a two-base mismatch mimicking a CPD moiety. Altogether our data demonstrate that hSSB2 is involved in the cellular response to UV exposure.


2021 ◽  
Author(s):  
Emmanuelle Bignon ◽  
Natacha Gillet ◽  
Chen-Hui Chan ◽  
Tao Jiang ◽  
Antonio Monari ◽  
...  

ABSTRACTThe combination of several closely spaced DNA lesions, which can be induced by a single radical hit, constitutes a hallmark in the DNA damage landscape and radiation chemistry. The occurrence of such tandem base lesions give rise to a strong coupling with the double helix degrees of freedom and induce important structural deformations, in contrast to DNA strands containing a single oxidized nucleobase. Although such complex lesions are known to be refractory to repair by DNA glycosylases, there is still a lack of structural evidence to rationalize these phenomena. In this contribution, we explore, by numerical modeling and molecular simulations, the behavior of the bacterial glycosylase responsible for base excision repair (MutM), specialized in excising oxidatively-damaged defects such as 7,8-dihydro-8-oxoguanine (8-oxoG). The difference in lesion recognition between a simple damage and a tandem lesions featuring an additional abasic site is assessed at atomistic resolution owing to microsecond molecular dynamics simulation and machine learning postprocessing, allowing to extensively pinpoint crucial differences in the interaction patterns of the damaged bases. This work advocates for the use of such high throughput numerical simulations for exploring the complex combinatorial chemistry of tandem DNA lesions repair and more generally multiple damaged sites of the utmost significance in radiation chemistry.


Mutagenesis ◽  
2019 ◽  
Vol 34 (4) ◽  
pp. 341-354 ◽  
Author(s):  
Leticia K Lerner ◽  
Natália C Moreno ◽  
Clarissa R R Rocha ◽  
Veridiana Munford ◽  
Valquíria Santos ◽  
...  

Abstract Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.


1986 ◽  
Vol 235 (2) ◽  
pp. 531-536 ◽  
Author(s):  
M Dizdaroglu ◽  
E Holwitt ◽  
M P Hagan ◽  
W F Blakely

OsO4 selectively forms thymine glycol lesions in DNA. In the past, OsO4-treated DNA has been used as a substrate in studies of DNA repair utilizing base-excision repair enzymes such as DNA glycosylases. There is, however, no information available on the chemical identity of other OsO4-induced base lesions in DNA. A complete knowledge of such DNA lesions may be of importance for repair studies. Using a methodology developed recently for characterization of oxidative base damage in DNA, we provide evidence for the formation of cytosine glycol and 5,6-dihydroxycytosine moieties, in addition to thymine glycol, in DNA on treatment with OsO4. For this purpose, samples of OsO4-treated DNA were hydrolysed with formic acid, then trimethylsilylated and analysed by capillary gas chromatography-mass spectrometry. In addition to thymine glycol, 5-hydroxyuracil (isobarbituric acid), 5-hydroxycytosine and 5,6-dihydroxyuracil (isodialuric acid or dialuric acid) were identified in OsO4-treated DNA. It is suggested that 5-hydroxyuracil was formed by formic acid-induced deamination and dehydration of cytosine glycol, which was the actual oxidation product of the cytosine moiety in DNA. 5-Hydroxycytosine obviously resulted from dehydration of cytosine glycol, and 5,6-dihydroxyuracil from deamination of 5,6-dihydroxycytosine. This scheme was supported by the presence of 5-hydroxyuracil, uracil glycol and 5,6-dihydroxyuracil in OsO4-treated cytosine. Treatment of OsO4-treated cytosine with formic acid caused the complete conversion of uracil glycol into 5-hydroxyuracil. The implications of these findings relative to studies of DNA repair are discussed.


Sign in / Sign up

Export Citation Format

Share Document