scholarly journals Super-Resolution Cryo-EM Maps With 3D Deep Generative Networks

2021 ◽  
Author(s):  
Sai Raghavendra Maddhuri Venkata Subramaniya ◽  
Genki Terashi ◽  
Daisuke Kihara

AbstractAn increasing number of biological macromolecules have been solved with cryo-electron microscopy (cryo-EM). Over the past few years, the resolutions of density maps determined by cryo-EM have largely improved in general. However, there are still many cases where the resolution is not high enough to model molecular structures with standard computational tools. If the resolution obtained is near the empirical border line (3-4 Å), a small improvement of resolution will significantly facilitate structure modeling. Here, we report SuperEM, a novel deep learning-based method that uses a three-dimensional generative adversarial network for generating an improved-resolution EM map from an experimental EM map. SuperEM is designed to work with EM maps in the resolution range of 3 Å to 6 Å and has shown an average resolution improvement of 1.0 Å on a test dataset of 36 experimental maps. The generated super-resolution maps are shown to result in better structure modelling of proteins.

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2164
Author(s):  
Md. Shahinur Alam ◽  
Ki-Chul Kwon ◽  
Munkh-Uchral Erdenebat ◽  
Mohammed Y. Abbass ◽  
Md. Ashraful Alam ◽  
...  

The integral imaging microscopy system provides a three-dimensional visualization of a microscopic object. However, it has a low-resolution problem due to the fundamental limitation of the F-number (the aperture stops) by using micro lens array (MLA) and a poor illumination environment. In this paper, a generative adversarial network (GAN)-based super-resolution algorithm is proposed to enhance the resolution where the directional view image is directly fed as input. In a GAN network, the generator regresses the high-resolution output from the low-resolution input image, whereas the discriminator distinguishes between the original and generated image. In the generator part, we use consecutive residual blocks with the content loss to retrieve the photo-realistic original image. It can restore the edges and enhance the resolution by ×2, ×4, and even ×8 times without seriously hampering the image quality. The model is tested with a variety of low-resolution microscopic sample images and successfully generates high-resolution directional view images with better illumination. The quantitative analysis shows that the proposed model performs better for microscopic images than the existing algorithms.


2021 ◽  
Vol 13 (24) ◽  
pp. 5055
Author(s):  
Shihong Wang ◽  
Jiayi Guo ◽  
Yueting Zhang ◽  
Yuxin Hu ◽  
Chibiao Ding ◽  
...  

SAR tomography (TomoSAR) is an important technology for three-dimensional (3D) reconstruction of buildings through multiple coherent SAR images. In order to obtain sufficient signal-to-noise ratio (SNR), typical TomoSAR applications often require dozens of scenes of SAR images. However, limited by time and cost, the available SAR images are often only 3–5 scenes in practice, which makes the traditional TomoSAR technique unable to produce satisfactory SNR and elevation resolution. To tackle this problem, the conditional generative adversarial network (CGAN) is proposed to improve the TomoSAR 3D reconstruction by learning the prior information of building. Moreover, the number of tracks required can be reduced to three. Firstly, a TomoSAR 3D super-resolution dataset is constructed using high-quality data from the airborne array and low-quality data obtained from a small amount of tracks sampled from all observations. Then, the CGAN model is trained to estimate the corresponding high-quality result from the low-quality input. Airborne data experiments prove that the reconstruction results are improved in areas with and without overlap, both qualitatively and quantitatively. Furthermore, the network pretrained on the airborne dataset is directly used to process the spaceborne dataset without any tuning, and generates satisfactory results, proving the effectiveness and robustness of our method. The comparative experiment with nonlocal algorithm also shows that the proposed method has better height estimation and higher time efficiency.


2021 ◽  
Vol 58 (8) ◽  
pp. 0810005
Author(s):  
查体博 Zha Tibo ◽  
罗林 Luo Lin ◽  
杨凯 Yang Kai ◽  
张渝 Zhang Yu ◽  
李金龙 Li Jinlong

Author(s):  
Khaled ELKarazle ◽  
Valliappan Raman ◽  
Patrick Then

Age estimation models can be employed in many applications, including soft biometrics, content access control, targeted advertising, and many more. However, as some facial images are taken in unrestrained conditions, the quality relegates, which results in the loss of several essential ageing features. This study investigates how introducing a new layer of data processing based on a super-resolution generative adversarial network (SRGAN) model can influence the accuracy of age estimation by enhancing the quality of both the training and testing samples. Additionally, we introduce a novel convolutional neural network (CNN) classifier to distinguish between several age classes. We train one of our classifiers on a reconstructed version of the original dataset and compare its performance with an identical classifier trained on the original version of the same dataset. Our findings reveal that the classifier which trains on the reconstructed dataset produces better classification accuracy, opening the door for more research into building data-centric machine learning systems.


Author(s):  
Kalpesh Prajapati ◽  
Vishal Chudasama ◽  
Heena Patel ◽  
Kishor Upla ◽  
Kiran Raja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document