scholarly journals mmSIM: An open toolbox for accessible structured illumination microscopy

2021 ◽  
Author(s):  
Craig T. Russell ◽  
Michael Shaw

SummarySince the first practical super-resolution structured illumination fluorescence microscopes (SIM) were demonstrated more than two decades ago the method has become increasingly popular for a wide range of bioimaging applications. The high cost and relative inflexibility of commercial systems, coupled with the conceptual simplicity of the approach and the desire to exploit and customise existing hardware, have led to the development of a large number of home-built systems. Several detailed hardware designs are available in the scientific literature, complemented by open-source software tools for SIM image validation and reconstruction. However, there remains a lack of simple open-source software to control these systems and manage the synchronization between hardware components, which is critical for effective SIM imaging. This article describes a new suite of software tools based on the popular Micro-Manager package, which enable the keen microscopist to develop and run a SIM system. We use the software to control two custom-built, high-speed, spatial light modulator-based SIM systems, evaluating their performance by imaging a range of fluorescent samples. By simplifying the process of SIM hardware development, we aim to support wider adoption of the technique.

Author(s):  
Craig T. Russell ◽  
Michael Shaw

Since the first practical super-resolution structured illumination fluorescence microscopes (SIM) were demonstrated more than two decades ago, the method has become increasingly popular for a wide range of bioimaging applications. The high cost and relative inflexibility of commercial systems, coupled with the conceptual simplicity of the approach and the desire to exploit and customize existing hardware, have led to the development of a large number of home-built systems. Several detailed hardware designs are available in the scientific literature, complemented by open-source software tools for SIM image validation and reconstruction. However, there remains a lack of simple open-source software to control these systems and manage the synchronization between hardware components, which is critical for effective SIM imaging. This article describes a new suite of software tools based on the popular Micro-Manager package, which enable the keen microscopist to develop and run a SIM system. We use the software to control two custom-built, high-speed, spatial light modulator-based SIM systems, evaluating their performance by imaging a range of fluorescent samples. By simplifying the process of SIM hardware development, we aim to support wider adoption of the technique. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)’.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruslan Röhrich ◽  
A. Femius Koenderink

AbstractStructured illumination microscopy (SIM) is a well-established fluorescence imaging technique, which can increase spatial resolution by up to a factor of two. This article reports on a new way to extend the capabilities of structured illumination microscopy, by combining ideas from the fields of illumination engineering and nanophotonics. In this technique, plasmonic arrays of hexagonal symmetry are illuminated by two obliquely incident beams originating from a single laser. The resulting interference between the light grating and plasmonic grating creates a wide range of spatial frequencies above the microscope passband, while still preserving the spatial frequencies of regular SIM. To systematically investigate this technique and to contrast it with regular SIM and localized plasmon SIM, we implement a rigorous simulation procedure, which simulates the near-field illumination of the plasmonic grating and uses it in the subsequent forward imaging model. The inverse problem, of obtaining a super-resolution (SR) image from multiple low-resolution images, is solved using a numerical reconstruction algorithm while the obtained resolution is quantitatively assessed. The results point at the possibility of resolution enhancements beyond regular SIM, which rapidly vanishes with the height above the grating. In an initial experimental realization, the existence of the expected spatial frequencies is shown and the performance of compatible reconstruction approaches is compared. Finally, we discuss the obstacles of experimental implementations that would need to be overcome for artifact-free SR imaging.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Xibin Yang ◽  
Qian Zhu ◽  
Zhenglong Sun ◽  
Gang Wen ◽  
Xin Jin ◽  
...  

Structured illumination microscopy (SIM) is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly used fluorescent labeling methods. Structured illumination can be obtained by either laser interference or projection of fringe patterns. Here, we proposed a fringe projector composed of a compact multi-wavelength LEDs module and a digital micromirror device (DMD) which can be directly attached to most commercial inverted fluorescent microscopes and update it into a SIM system. The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured light field were studied. With the optimized fringe pattern, [Formula: see text] resolution improvement could be obtained with high-end oil objectives. Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated. Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in the field of life science and medicine.


Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 143-148
Author(s):  
Adrien Descloux ◽  
Marcel Müller ◽  
Vytautas Navikas ◽  
Andreas Markwirth ◽  
Robin van den Eynde ◽  
...  

AbstractSuper-resolution structured illumination microscopy (SR-SIM) can be conducted at video-rate acquisition speeds when combined with high-speed spatial light modulators and sCMOS cameras, rendering it particularly suitable for live-cell imaging. If, however, three-dimensional (3D) information is desired, the sequential acquisition of vertical image stacks employed by current setups significantly slows down the acquisition process. In this work, we present a multiplane approach to SR-SIM that overcomes this slowdown via the simultaneous acquisition of multiple object planes, employing a recently introduced multiplane image splitting prism combined with high-speed SIM illumination. This strategy requires only the introduction of a single optical element and the addition of a second camera to acquire a laterally highly resolved 3D image stack. We demonstrate the performance of multiplane SIM by applying this instrument to imaging the dynamics of mitochondria in living COS-7 cells.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyu Zhao ◽  
Zhaojun Wang ◽  
Tongsheng Chen ◽  
Ming Lei ◽  
Baoli Yao ◽  
...  

Super-resolution microscopy surpasses the diffraction limit to enable the observation of the fine details in sub-cellular structures and their dynamics in diverse biological processes within living cells. Structured illumination microscopy (SIM) uses a relatively low illumination light power compared with other super-resolution microscopies and has great potential to meet the demands of live-cell imaging. However, the imaging acquisition and reconstruction speeds limit its further applications. In this article, recent developments all targeted at improving the overall speed of SIM are reviewed. These comprise both hardware and software improvements, which include a reduction in the number of raw images, GPU acceleration, deep learning and the spatial domain reconstruction. We also discuss the application of these developments in live-cell imaging.


2018 ◽  
Author(s):  
Jakub Pospíšil ◽  
Tomáš Lukeš ◽  
Justin Bendesky ◽  
Karel Fliegel ◽  
Kathrin Spendier ◽  
...  

AbstractBackgroundStructured illumination microscopy (SIM) is a family of methods in optical fluorescence microscopy that can achieve both optical sectioning and super-resolution effects. SIM is a valuable method for high resolution imaging of fixed cells or tissues labeled with conventional fluorophores, as well as for imaging the dynamics of live cells expressing fluorescent protein constructs. In SIM, one acquires a set of images with shifting illumination patterns. This set of images is subsequently treated with image analysis algorithms to produce an image with reduced out-of-focus light (optical sectioning) and/or with improved resolution (super-resolution).FindingsFive complete and freely available SIM datasets are presented including raw and analyzed data. We report methods for image acquisition and analysis using open source software along with examples of the resulting images when processed with different methods. We processed the data using established optical sectioning SIM and super-resolution SIM methods, and with newer Bayesian restoration approaches which we are developing.ConclusionVarious methods for SIM data acquisition and processing are actively being developed, but complete raw data from SIM experiments is not typically published. Publicly available, high quality raw data with examples of processed results will aid researchers when developing new methods in SIM. Biologists will also find interest in the high-resolution images of animal tissues and cells we acquired. All of the data was processed with SIMToolbox, an open source and freely available software solution for SIM.


Nanoscale ◽  
2014 ◽  
Vol 6 (11) ◽  
pp. 5807-5812 ◽  
Author(s):  
Joseph Louis Ponsetto ◽  
Feifei Wei ◽  
Zhaowei Liu

Fluorescent imaging resolution down to 51 nm is shown by generating tunable localized plasmon excitations on a nano-antenna array.


2012 ◽  
Vol 05 (04) ◽  
pp. 1250025 ◽  
Author(s):  
TREVOR A. SMITH ◽  
LIISA M. HIRVONEN ◽  
CRAIG N. LINCOLN ◽  
XIAOTAO HAO

A wide range of techniques has been developed to image biological samples at high spatial and temporal resolution. In this paper, we report recent results from deep-UV confocal fluorescence microscopy to image inherent emission from fluorophores such as tryptophan, and structured illumination microscopy (SIM) of biological materials. One motivation for developing deep-UV fluorescence imaging and SIM is to provide methods to complement our measurements in the emerging field of X-ray coherent diffractive imaging.


Author(s):  
Kseniya Korobchevskaya ◽  
Huw Colin-York ◽  
Liliana Barbieri ◽  
Marco Fritzsche

Quantifying cell generated mechanical forces is key to furthering our understanding of mechanobiology. Traction force microscopy (TFM) is one of the most broadly applied force probing technologies, but its sensitivity is strictly dependent on the spatio-temporal resolution of the underlying imaging system. In previous works, it was demonstrated that increased sampling densities of cell derived forces permitted by super-resolution fluorescence imaging enhanced the sensitivity of the TFM method. However, these recent advances to TFM based on super-resolution techniques were limited to slow acquisition speeds and high illumination powers. Here, we present three novel TFM approaches that, in combination with total internal reflection, structured illumination microscopy and astigmatism, improve the spatial and temporal performance in either two-dimensional or three-dimensional mechanical force quantification, while maintaining low illumination powers. These three techniques can be straightforwardly implemented on a single optical set-up offering a powerful platform to provide new insights into the physiological force generation in a wide range of biological studies. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)'.


Sign in / Sign up

Export Citation Format

Share Document