scholarly journals Mobile microscopy and telemedicine platform assisted by deep learning for quantification of Trichuris trichiura infection

2021 ◽  
Author(s):  
Elena Dacal ◽  
David Bermejo-Peláez ◽  
Lin Lin ◽  
Elisa Álamo ◽  
Daniel Cuadrado ◽  
...  

AbstractSoil-transmitted helminths (STH) are the most prevalent pathogens among the group of neglected tropical diseases (NTDs). Kato-Katz technique is the diagnosis method recommended by WHO and although is generally more sensitive than other microscopic methods in high transmission settings, it often presents a decreased sensitivity in low transmission settings and it is labour intensive. Digitizing the samples could provide a solution which allows to store the samples in a digital database and perform remote analysis. Artificial intelligence methods based on digitized samples can support diagnostics efforts by support diagnostics efforts by performing an automatic and objective quantification of disease infection.In this work, we propose an end-to-end pipeline for microscopy image digitization and automatic analysis of digitized images of soil-transmitted helminths. Our solution includes (1) a digitalization system based on a mobile app that digitizes the microscope samples using a low-cost 3D-printed microscope adapter, (2) a telemedicine platform for remote analysis and labelling and (3) novel deep learning algorithms for automatic assessment and quantification of parasitological infection of STH.This work has been evaluated by comparing the STH quantification using both a manual remote analysis based on the digitized images and the AI-assisted quantification against the reference method based on conventional microscopy. The deep learning algorithm has been trained and tested on 41 slides of stool samples containing 949 eggs from 6 different subjects using a cross-validation strategy obtaining a mean precision of 98,44% and mean recall of 80,94%. The results also proved the potential of generalization capability of the method at identifying different types of helminth eggs.In conclusion, this work has presented a comprehensive pipeline using smartphone-based microscopy integrated with a telemedicine platform for automatic image analysis and quantification of STH infection using artificial intelligence models.

2021 ◽  
Vol 15 (9) ◽  
pp. e0009677
Author(s):  
Elena Dacal ◽  
David Bermejo-Peláez ◽  
Lin Lin ◽  
Elisa Álamo ◽  
Daniel Cuadrado ◽  
...  

Soil-transmitted helminths (STH) are the most prevalent pathogens among the group of neglected tropical diseases (NTDs). The Kato-Katz technique is the diagnosis method recommended by the World Health Organization (WHO) although it often presents a decreased sensitivity in low transmission settings and it is labour intensive. Visual reading of Kato-Katz preparations requires the samples to be analyzed in a short period of time since its preparation. Digitizing the samples could provide a solution which allows to store the samples in a digital database and perform remote analysis. Artificial intelligence (AI) methods based on digitized samples can support diagnosis by performing an objective and automatic quantification of disease infection. In this work, we propose an end-to-end pipeline for microscopy image digitization and automatic analysis of digitized images of STH. Our solution includes (a) a digitization system based on a mobile app that digitizes microscope samples using a 3D printed microscope adapter, (b) a telemedicine platform for remote analysis and labelling, and (c) novel deep learning algorithms for automatic assessment and quantification of parasitological infections by STH. The deep learning algorithm has been trained and tested on 51 slides of stool samples containing 949 Trichuris spp. eggs from 6 different subjects. The algorithm evaluation was performed using a cross-validation strategy, obtaining a mean precision of 98.44% and a mean recall of 80.94%. The results also proved the potential of generalization capability of the method at identifying different types of helminth eggs. Additionally, the AI-assisted quantification of STH based on digitized samples has been compared to the one performed using conventional microscopy, showing a good agreement between measurements. In conclusion, this work has presented a comprehensive pipeline using smartphone-assisted microscopy. It is integrated with a telemedicine platform for automatic image analysis and quantification of STH infection using AI models.


Author(s):  
V. Palma

<p><strong>Abstract.</strong> In recent years, the diffusion of large image datasets and an unprecedented computational power have boosted the development of a class of artificial intelligence (AI) algorithms referred to as deep learning (DL). Among DL methods, convolutional neural networks (CNNs) have proven particularly effective in computer vision, finding applications in many disciplines. This paper introduces a project aimed at studying CNN techniques in the field of architectural heritage, a still to be developed research stream. The first steps and results in the development of a mobile app to recognize monuments are discussed. While AI is just beginning to interact with the built environment through mobile devices, heritage technologies have long been producing and exploring digital models and spatial archives. The interaction between DL algorithms and state-of-the-art information modeling is addressed, as an opportunity to both exploit heritage collections and optimize new object recognition techniques.</p>


Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 803
Author(s):  
Luu-Ngoc Do ◽  
Byung Hyun Baek ◽  
Seul Kee Kim ◽  
Hyung-Jeong Yang ◽  
Ilwoo Park ◽  
...  

The early detection and rapid quantification of acute ischemic lesions play pivotal roles in stroke management. We developed a deep learning algorithm for the automatic binary classification of the Alberta Stroke Program Early Computed Tomographic Score (ASPECTS) using diffusion-weighted imaging (DWI) in acute stroke patients. Three hundred and ninety DWI datasets with acute anterior circulation stroke were included. A classifier algorithm utilizing a recurrent residual convolutional neural network (RRCNN) was developed for classification between low (1–6) and high (7–10) DWI-ASPECTS groups. The model performance was compared with a pre-trained VGG16, Inception V3, and a 3D convolutional neural network (3DCNN). The proposed RRCNN model demonstrated higher performance than the pre-trained models and 3DCNN with an accuracy of 87.3%, AUC of 0.941, and F1-score of 0.888 for classification between the low and high DWI-ASPECTS groups. These results suggest that the deep learning algorithm developed in this study can provide a rapid assessment of DWI-ASPECTS and may serve as an ancillary tool that can assist physicians in making urgent clinical decisions.


Author(s):  
Shuai Wang ◽  
Bo Kang ◽  
Jinlu Ma ◽  
Xianjun Zeng ◽  
Mingming Xiao ◽  
...  

Abstract Objective The outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-COV-2) has caused more than 26 million cases of Corona virus disease (COVID-19) in the world so far. To control the spread of the disease, screening large numbers of suspected cases for appropriate quarantine and treatment are a priority. Pathogenic laboratory testing is typically the gold standard, but it bears the burden of significant false negativity, adding to the urgent need of alternative diagnostic methods to combat the disease. Based on COVID-19 radiographic changes in CT images, this study hypothesized that artificial intelligence methods might be able to extract specific graphical features of COVID-19 and provide a clinical diagnosis ahead of the pathogenic test, thus saving critical time for disease control. Methods We collected 1065 CT images of pathogen-confirmed COVID-19 cases along with those previously diagnosed with typical viral pneumonia. We modified the inception transfer-learning model to establish the algorithm, followed by internal and external validation. Results The internal validation achieved a total accuracy of 89.5% with a specificity of 0.88 and sensitivity of 0.87. The external testing dataset showed a total accuracy of 79.3% with a specificity of 0.83 and sensitivity of 0.67. In addition, in 54 COVID-19 images, the first two nucleic acid test results were negative, and 46 were predicted as COVID-19 positive by the algorithm, with an accuracy of 85.2%. Conclusion These results demonstrate the proof-of-principle for using artificial intelligence to extract radiological features for timely and accurate COVID-19 diagnosis. Key Points • The study evaluated the diagnostic performance of a deep learning algorithm using CT images to screen for COVID-19 during the influenza season. • As a screening method, our model achieved a relatively high sensitivity on internal and external CT image datasets. • The model was used to distinguish between COVID-19 and other typical viral pneumonia, both of which have quite similar radiologic characteristics.


Author(s):  
Abdulrazak Yahya Saleh ◽  
Lim Huey Chern

<p class="0abstract">The goal of this paper is to evaluate the deep learning algorithm for people placed in the Autism Spectrum Disorder (ASD) classification. ASD is a developmental disability that causes the affected people to have significant communication, social, and behavioural challenges. People with autism are saddled with communication problems, difficulties in social interaction and displaying repetitive behaviours. Several methods have been used to classify the ASD from non-ASD people. However, there is a need to explore more algorithms that can yield better classification performance. Recently, deep learning methods have significantly sharpened the cutting edge of learning algorithms in a wide range of artificial intelligence tasks. These artificial intelligence tasks refer to object detection, speech recognition, and machine translation. In this research, the convolutional neural network (CNN) is employed. This algorithm is used to find processes that can classify ASD with a higher level of accuracy. The image data is pre-processed; the CNN algorithm is then applied to classify the ASD and non-ASD, and the steps of implementing the CNN algorithm are clearly stated. Finally, the effectiveness of the algorithm is evaluated based on the accuracy performance. The support vector machine (SVM) is utilised for the purpose of comparison. The CNN algorithm produces better results with an accuracy of 97.07%, compared with the SVM algorithm. In the future, different types of deep learning algorithms need to be applied, and different datasets can be tested with different hyper-parameters to produce more accurate ASD classifications.</p>


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2557
Author(s):  
Ben Zierdt ◽  
Taichu Shi ◽  
Thomas DeGroat ◽  
Sam Furman ◽  
Nicholas Papas ◽  
...  

Ultraviolet disinfection has been proven to be effective for surface sanitation. Traditional ultraviolet disinfection systems generate omnidirectional radiation, which introduces safety concerns regarding human exposure. Large scale disinfection must be performed without humans present, which limits the time efficiency of disinfection. We propose and experimentally demonstrate a targeted ultraviolet disinfection system using a combination of robotics, lasers, and deep learning. The system uses a laser-galvo and a camera mounted on a two-axis gimbal running a custom deep learning algorithm. This allows ultraviolet radiation to be applied to any surface in the room where it is mounted, and the algorithm ensures that the laser targets the desired surfaces avoids others such as humans. Both the laser-galvo and the deep learning algorithm were tested for targeted disinfection.


Sign in / Sign up

Export Citation Format

Share Document