scholarly journals Generalizable prediction of stimulus-independent, task-unrelated thought from functional brain networks

2021 ◽  
Author(s):  
Aaron Kucyi ◽  
Michael Esterman ◽  
James Capella ◽  
Allison Green ◽  
Mai Uchida ◽  
...  

AbstractNeural substrates of “mind wandering” have been widely reported, yet experiments have varied in their contexts and their definitions of this psychological phenomenon, limiting generalizability. We aimed to develop and test the generalizability, specificity, and clinical relevance of a functional brain network-based marker for a well-defined feature of mind wandering—stimulus-independent, task-unrelated thought (SITUT). Combining functional MRI (fMRI) with online experience sampling in healthy adults, we defined a connectome-wide model of inter-regional coupling—dominated by default-frontoparietal control subnetwork interactions—that predicted trial-by-trial SITUT fluctuations within novel individuals. Model predictions generalized in an independent sample of attention-deficit/hyperactivity disorder (ADHD) adults. In three additional resting-state fMRI studies (total n=1,115), including healthy and ADHD populations, we demonstrated further prediction of SITUT (at modest effect sizes) defined using multiple trait-level and in-scanner measures. Our findings suggest that SITUT is represented within a common pattern of brain network interactions across time scales, populations, and contexts.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Aaron Kucyi ◽  
Michael Esterman ◽  
James Capella ◽  
Allison Green ◽  
Mai Uchida ◽  
...  

AbstractNeural substrates of “mind wandering” have been widely reported, yet experiments have varied in their contexts and their definitions of this psychological phenomenon, limiting generalizability. We aimed to develop and test the generalizability, specificity, and clinical relevance of a functional brain network-based marker for a well-defined feature of mind wandering—stimulus-independent, task-unrelated thought (SITUT). Combining functional MRI (fMRI) with online experience sampling in healthy adults, we defined a connectome-wide model of inter-regional coupling—dominated by default-frontoparietal control subnetwork interactions—that predicted trial-by-trial SITUT fluctuations within novel individuals. Model predictions generalized in an independent sample of adults with attention-deficit/hyperactivity disorder (ADHD). In three additional resting-state fMRI studies (total n = 1115), including healthy individuals and individuals with ADHD, we demonstrated further prediction of SITUT (at modest effect sizes) defined using multiple trait-level and in-scanner measures. Our findings suggest that SITUT is represented within a common pattern of brain network interactions across time scales and contexts.


2021 ◽  
pp. 1-11
Author(s):  
Yi Liu ◽  
Zhuoyuan Li ◽  
Xueyan Jiang ◽  
Wenying Du ◽  
Xiaoqi Wang ◽  
...  

Background: Evidence suggests that subjective cognitive decline (SCD) individuals with worry have a higher risk of cognitive decline. However, how SCD-related worry influences the functional brain network is still unknown. Objective: In this study, we aimed to explore the differences in functional brain networks between SCD subjects with and without worry. Methods: A total of 228 participants were enrolled from the Sino Longitudinal Study on Cognitive Decline (SILCODE), including 39 normal control (NC) subjects, 117 SCD subjects with worry, and 72 SCD subjects without worry. All subjects completed neuropsychological assessments, APOE genotyping, and resting-state functional magnetic resonance imaging (rs-fMRI). Graph theory was applied for functional brain network analysis based on both the whole brain and default mode network (DMN). Parameters including the clustering coefficient, shortest path length, local efficiency, and global efficiency were calculated. Two-sample T-tests and chi-square tests were used to analyze differences between two groups. In addition, a false discovery rate-corrected post hoc test was applied. Results: Our analysis showed that compared to the SCD without worry group, SCD with worry group had significantly increased functional connectivity and shortest path length (p = 0.002) and a decreased clustering coefficient (p = 0.013), global efficiency (p = 0.001), and local efficiency (p <  0.001). The above results appeared in both the whole brain and DMN. Conclusion: There were significant differences in functional brain networks between SCD individuals with and without worry. We speculated that worry might result in alterations of the functional brain network for SCD individuals and then result in a higher risk of cognitive decline.


2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


2020 ◽  
Vol 30 (10) ◽  
pp. 2050051
Author(s):  
Feng Fang ◽  
Thomas Potter ◽  
Thinh Nguyen ◽  
Yingchun Zhang

Emotion and affect play crucial roles in human life that can be disrupted by diseases. Functional brain networks need to dynamically reorganize within short time periods in order to efficiently process and respond to affective stimuli. Documenting these large-scale spatiotemporal dynamics on the same timescale they arise, however, presents a large technical challenge. In this study, the dynamic reorganization of the cortical functional brain network during an affective processing and emotion regulation task is documented using an advanced multi-model electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) technique. Sliding time window correlation and [Formula: see text]-means clustering are employed to explore the functional brain connectivity (FC) dynamics during the unaltered perception of neutral (moderate valence, low arousal) and negative (low valence, high arousal) stimuli and cognitive reappraisal of negative stimuli. Betweenness centralities are computed to identify central hubs within each complex network. Results from 20 healthy subjects indicate that the cortical mechanism for cognitive reappraisal follows a ‘top-down’ pattern that occurs across four brain network states that arise at different time instants (0–170[Formula: see text]ms, 170–370[Formula: see text]ms, 380–620[Formula: see text]ms, and 620–1000[Formula: see text]ms). Specifically, the dorsolateral prefrontal cortex (DLPFC) is identified as a central hub to promote the connectivity structures of various affective states and consequent regulatory efforts. This finding advances our current understanding of the cortical response networks of reappraisal-based emotion regulation by documenting the recruitment process of four functional brain sub-networks, each seemingly associated with different cognitive processes, and reveals the dynamic reorganization of functional brain networks during emotion regulation.


2018 ◽  
Vol 26 (2) ◽  
pp. 188-200 ◽  
Author(s):  
Ismail Koubiyr ◽  
Mathilde Deloire ◽  
Pierre Besson ◽  
Pierrick Coupé ◽  
Cécile Dulau ◽  
...  

Background: There is a lack of longitudinal studies exploring the topological organization of functional brain networks at the early stages of multiple sclerosis (MS). Objective: This study aims to assess potential brain functional reorganization at rest in patients with CIS (PwCIS) after 1 year of evolution and to characterize the dynamics of functional brain networks at the early stage of the disease. Methods: We prospectively included 41 PwCIS and 19 matched healthy controls (HCs). They were scanned at baseline and after 1 year. Using graph theory, topological metrics were calculated for each region. Hub disruption index was computed for each metric. Results: Hub disruption indexes of degree and betweenness centrality were negative at baseline in patients ( p < 0.05), suggesting brain reorganization. After 1 year, hub disruption indexes for degree and betweenness centrality were still negative ( p < 0.00001), but such reorganization appeared more pronounced than at baseline. Different brain regions were driving these alterations. No global efficiency differences were observed between PwCIS and HCs either at baseline or at 1 year. Conclusion: Dynamic changes in functional brain networks appear at the early stages of MS and are associated with the maintenance of normal global efficiency in the brain, suggesting a compensatory effect.


2021 ◽  
Author(s):  
Jae-Joong Lee ◽  
Sungwoo Lee ◽  
Dong Hee Lee ◽  
Choong-Wan Woo

Pain is constructed through complex interactions among multiple brain systems, but it remains unclear how functional brain network representations are dynamically reconfigured over time while experiencing pain. Here, we investigated the dynamic changes in the functional brain networks during 20-min capsaicin-induced sustained orofacial pain. In the early stage, the orofacial areas of the primary somatomotor cortex were separated from the other primary somatomotor cortices and integrated with subcortical and frontoparietal regions, constituting a brain-wide pain supersystem. As pain decreased over time, the subcortical and frontoparietal regions were separated from this pain supersystem and connected to multiple cerebellar regions. Machine-learning models based on these dynamic network features showed significant predictions of changes in pain experience across two independent datasets (n = 48 and 74). This study provides new insights into how multiple brain systems dynamically interact to construct and modulate pain experience, potentially advancing our mechanistic understanding of chronic pain.


2015 ◽  
Vol 25 (03) ◽  
pp. 1550034 ◽  
Author(s):  
Adrián Navas ◽  
David Papo ◽  
Stefano Boccaletti ◽  
F. Del-Pozo ◽  
Ricardo Bajo ◽  
...  

We investigate how hubs of functional brain networks are modified as a result of mild cognitive impairment (MCI), a condition causing a slight but noticeable decline in cognitive abilities, which sometimes precedes the onset of Alzheimer's disease. We used magnetoencephalography (MEG) to investigate the functional brain networks of a group of patients suffering from MCI and a control group of healthy subjects, during the execution of a short-term memory task. Couplings between brain sites were evaluated using synchronization likelihood, from which a network of functional interdependencies was constructed and the centrality, i.e. importance, of their nodes was quantified. The results showed that, with respect to healthy controls, MCI patients were associated with decreases and increases in hub centrality respectively in occipital and central scalp regions, supporting the hypothesis that MCI modifies functional brain network topology, leading to more random structures.


2014 ◽  
Vol 36 (3) ◽  
pp. 862-871 ◽  
Author(s):  
Lubin Wang ◽  
Qiang Liu ◽  
Hui Shen ◽  
Hong Li ◽  
Dewen Hu

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jinlong Hu ◽  
Lijie Cao ◽  
Tenghui Li ◽  
Shoubin Dong ◽  
Ping Li

Abstract Background Autism spectrum disorders (ASD) imply a spectrum of symptoms rather than a single phenotype. ASD could affect brain connectivity at different degree based on the severity of the symptom. Given their excellent learning capability, graph neural networks (GNN) methods have recently been used to uncover functional connectivity patterns and biological mechanisms in neuropsychiatric disorders, such as ASD. However, there remain challenges to develop an accurate GNN learning model and understand how specific decisions of these graph models are made in brain network analysis. Results In this paper, we propose a graph attention network based learning and interpreting method, namely GAT-LI, which learns to classify functional brain networks of ASD individuals versus healthy controls (HC), and interprets the learned graph model with feature importance. Specifically, GAT-LI includes a graph learning stage and an interpreting stage. First, in the graph learning stage, a new graph attention network model, namely GAT2, uses graph attention layers to learn the node representation, and a novel attention pooling layer to obtain the graph representation for functional brain network classification. We experimentally compared GAT2 model’s performance on the ABIDE I database from 1035 subjects against the classification performances of other well-known models, and the results showed that the GAT2 model achieved the best classification performance. We experimentally compared the influence of different construction methods of brain networks in GAT2 model. We also used a larger synthetic graph dataset with 4000 samples to validate the utility and power of GAT2 model. Second, in the interpreting stage, we used GNNExplainer to interpret learned GAT2 model with feature importance. We experimentally compared GNNExplainer with two well-known interpretation methods including Saliency Map and DeepLIFT to interpret the learned model, and the results showed GNNExplainer achieved the best interpretation performance. We further used the interpretation method to identify the features that contributed most in classifying ASD versus HC. Conclusion We propose a two-stage learning and interpreting method GAT-LI to classify functional brain networks and interpret the feature importance in the graph model. The method should also be useful in the classification and interpretation tasks for graph data from other biomedical scenarios.


Sign in / Sign up

Export Citation Format

Share Document