scholarly journals The human brain’s intrinsic network architecture is organized to represent diverse cognitive task information

2021 ◽  
Author(s):  
Douglas H. Schultz ◽  
Takuya Ito ◽  
Michael W. Cole

AbstractA set of distributed cognitive control networks are known to contribute to diverse cognitive demands, yet it is unclear how these networks gain this domain-general capacity. We hypothesized that this capacity is largely due to the particular organization of the human brain’s intrinsic network architecture. Specifically, we tested the possibility that each brain region’s domain generality is reflected in its level of global (hub-like) intrinsic connectivity, as well as its particular global connectivity topography. Consistent with prior work, we found that cognitive control networks exhibited domain generality, as they represented diverse task context information covering sensory, motor response, and logic rule domains. Supporting our hypothesis, we found that the level of global intrinsic connectivity (as estimated with task-free fMRI) was correlated with domain generality during tasks. Further, using a novel information fingerprint mapping approach, we found that each brain region’s unique cognitive rule response profile could be predicted based on its unique intrinsic connectivity pattern. Together these results suggest that the human brain’s intrinsic network architecture supports its ability to represent diverse cognitive task information, largely via the placement of cognitive control networks within the brain’s global network organization.

2019 ◽  
Author(s):  
Carrisa V Cocuzza ◽  
Takuya Ito ◽  
Douglas Schultz ◽  
Danielle S Bassett ◽  
Michael W Cole

AbstractFunctional connectivity studies have identified at least two large-scale neural systems that constitute cognitive control networks – the frontoparietal network (FPN) and cingulo-opercular network (CON). Control networks are thought to support goal-directed cognition and behavior. It was previously shown that the FPN flexibly shifts its global connectivity pattern according to task goal, consistent with a “flexible hub” mechanism for cognitive control. Our aim was to build on this finding to develop a functional cartography (a multi-metric profile) of control networks in terms of dynamic network properties. We quantified network properties in (male and female) humans using a high-control-demand cognitive paradigm involving switching among 64 task sets. We hypothesized that cognitive control is enacted by the FPN and CON via distinct but complementary roles reflected in network dynamics. Consistent with a flexible “coordinator” mechanism, FPN connections were varied across tasks, while maintaining within-network connectivity to aid cross-region coordination. Consistent with a flexible “switcher” mechanism, CON regions switched to other networks in a task-dependent manner, driven primarily by reduced within-network connections to other CON regions. This pattern of results suggests FPN acts as a dynamic, global coordinator of goal-relevant information, while CON transiently disbands to lend processing resources to other goal-relevant networks. This cartography of network dynamics reveals a dissociation between two prominent cognitive control networks, suggesting complementary mechanisms underlying goal-directed cognition.Significance StatementCognitive control supports a variety of behaviors requiring flexible cognition, such as rapidly switching between tasks. Furthermore, cognitive control is negatively impacted in a variety of mental illnesses. We used tools from network science to characterize the implementation of cognitive control by large-scale brain systems. This revealed that two systems – the frontoparietal (FPN) and cingulo-opercular (CON) networks – have distinct but complementary roles in controlling global network reconfigurations. The FPN exhibited properties of a flexible coordinator (orchestrating task changes), while CON acted as a flexible switcher (switching specific regions to other systems to lend processing resources). These findings reveal an underlying distinction in cognitive processes that may be applicable to clinical, educational, and machine learning work targeting cognitive flexibility.


2014 ◽  
Vol 10 ◽  
pp. P383-P384 ◽  
Author(s):  
Michael J. O'Sullivan ◽  
Rok Berlot ◽  
Claudia Metzler-Baddeley ◽  
Nicola J. Ray ◽  
Derek K. Jones ◽  
...  

2019 ◽  
Author(s):  
Thomas H. Alderson ◽  
Arun L.W. Bokde ◽  
J.A.Scott. Kelso ◽  
Liam Maguire ◽  
Damien Coyle

AbstractDespite resting state networks being associated with a variety of cognitive abilities, it remains unclear how these local areas act in concert to express particular cognitive operations. Theoretical and empirical accounts indicate that large-scale resting state networks reconcile dual tendencies toward integration and segregation by operating in a metastable regime of their coordination dynamics. One proposal is that metastability confers important behavioural qualities by dynamically binding distributed local areas into large-scale neurocognitive entities. We tested this hypothesis by analysing fMRI data in a large cohort of healthy individuals (N=566) and comparing the metastability of the brain’s large-scale resting network architecture at rest and during the performance of several tasks. Task-based reasoning was principally characterised by high metastability in cognitive control networks and low metastability in sensory processing areas. Although metastability between resting state networks increased during task performance, cognitive ability was more closely linked to spontaneous activity. High metastability in the intrinsic connectivity of cognitive control networks was linked to novel problem solving (or fluid intelligence) but was less important in tasks relying on prior experience (or crystallised intelligence). Crucially, subjects with resting architectures similar or ‘pre-configured’ to a task-general arrangement demonstrated superior cognitive performance. Taken together, our findings support a critical linkage between the spontaneous metastability of the large-scale networks of the cerebral cortex and cognition.


2019 ◽  
Author(s):  
Debbie Marianne Yee ◽  
Sarah L Adams ◽  
Asad Beck ◽  
Todd Samuel Braver

Motivational incentives play an influential role in value-based decision-making and cognitive control. A compelling hypothesis in the literature suggests that the brain integrates the motivational value of diverse incentives (e.g., motivational integration) into a common currency value signal that influences decision-making and behavior. To investigate whether motivational integration processes change during healthy aging, we tested older (N=44) and younger (N=54) adults in an innovative incentive integration task paradigm that establishes dissociable and additive effects of liquid (e.g., juice, neutral, saltwater) and monetary incentives on cognitive task performance. The results reveal that motivational incentives improve cognitive task performance in both older and younger adults, providing novel evidence demonstrating that age-related cognitive control deficits can be ameliorated with sufficient incentive motivation. Additional analyses revealed clear age-related differences in motivational integration. Younger adult task performance was modulated by both monetary and liquid incentives, whereas monetary reward effects were more gradual in older adults and more strongly impacted by trial-by-trial performance feedback. A surprising discovery was that older adults shifted attention from liquid valence toward monetary reward throughout task performance, but younger adults shifted attention from monetary reward toward integrating both monetary reward and liquid valence by the end of the task, suggesting differential strategic utilization of incentives. Together these data suggest that older adults may have impairments in incentive integration, and employ different motivational strategies to improve cognitive task performance. The findings suggest potential candidate neural mechanisms that may serve as the locus of age-related change, providing targets for future cognitive neuroscience investigations.


2017 ◽  
Vol 81 (10) ◽  
pp. S378-S379
Author(s):  
Amy Peters ◽  
Lisanne Jenkins ◽  
Jonathan Stange ◽  
Katie Bessette ◽  
Kristy Skerrett ◽  
...  

2019 ◽  
Author(s):  
Fabrice Senger ◽  
Amandine Pitaval ◽  
Hajer Ennomani ◽  
Laetitia Kurzawa ◽  
Laurent Blanchoin ◽  
...  

Cell and tissue morphogenesis depend on the production and spatial organization of tensional forces in the actin cytoskeleton. Actin network architecture is complex because it is made of distinct modules in which filaments adopt a variety of organizations. The assembly and dynamics of these modules is well described but the self-organisation rules directing the global network architecture are much less understood. Here we investigated the mechanism regulating the interplay between network architecture and the geometry of cell’s extracellular environment. We found that α-actinin, a filament crosslinker, is essential for network symmetry to be consistent with extracellular microenvironment symmetry. It appeared to be required for the interconnection of transverse arcs with radial fibres to ensure an appropriate balance between forces at cell adhesions and across the entire actin network. Furthermore, the connectivity of the actin network appeared necessary for the cell ability to integrate and adapt to complex patterns of extracellular cues as they migrate. Altogether, our study has unveiled a role of actin-filament crosslinking in the physical integration of mechanical forces throughout the entire cell, and the role of this integration in the establishment and adaptation of intracellular symmetry axes in accordance with the geometry of extracellular cues.


2019 ◽  
Vol 23 (4) ◽  
pp. 740-751 ◽  
Author(s):  
Alexis Hervais-Adelman ◽  
Laura Babcock

Simultaneous interpreting is a complex cognitive task that requires the concurrent execution of multiple processes: listening, comprehension, conversion of a message from one language to another, speech production, and self-monitoring. This requires the deployment of an array of linguistic and cognitive control mechanisms that must coordinate the various brain systems implicated in handling these tasks. How the brain handles this challenge remains an open question, and recent brain imaging investigations have begun to complement the theories based on behavioural data. fMRI studies have shown that simultaneous interpreting engages a network of brain regions encompassing those implicated in speech perception and production, language switching, self-monitoring, and selection. Structural imaging studies have been carried out that also indicate modifications to a similar set of structures. In the present paper, we review the extant data and propose an integrative model of simultaneous interpreting that piggybacks on existing theories of multilingual language control.


Sign in / Sign up

Export Citation Format

Share Document