scholarly journals A novel capsid protein network allows the characteristic inner membrane structure of Marseilleviridae giant viruses

2021 ◽  
Author(s):  
Akane Chihara ◽  
Raymond N. Burton-Smith ◽  
Naoko Kajimura ◽  
Kaoru Mitsuoka ◽  
Kenta Okamoto ◽  
...  

AbstractMarseilleviridae is a family of the new order of giant viruses, which exhibit a characteristic inner membrane. Here, we investigated the entire structure of tokyovirus, a species of Marseillevirus at 7.7 Å resolution using 1 MV high-voltage cryo-EM and single particle analysis. The minor capsid lattice formed by five proteins, shows a novel structure compared to other icosahedral giant viruses. Under the minor capsid proteins, scaffold proteins connect two five-fold vertices and interact with the inner membrane. Previously reported giant viruses utilise “tape measure” proteins, proposed to control its capsid size, which could not be identified in tokyovirus, but scaffold proteins appear to perform a similar role. A density on top of the major capsid protein was identified, which suggested to be a 14kDa glycoprotein. Our observations suggest that the icosahedral particle of Marseilleviridae is constructed with a novel capsid protein network, which allows the characteristic inner membrane structure.

2017 ◽  
Vol 13 (6) ◽  
pp. e1005612 ◽  
Author(s):  
Mathieu Ouellet ◽  
Gérald Guillebaud ◽  
Valerie Gervais ◽  
David Lupien St-Pierre ◽  
Marc Germain

Intervirology ◽  
2012 ◽  
Vol 55 (5) ◽  
pp. 321-332 ◽  
Author(s):  
Philippe Colson ◽  
Xavier de Lamballerie ◽  
Ghislain Fournous ◽  
Didier Raoult
Keyword(s):  

2021 ◽  
Author(s):  
Raymond N Burton-Smith ◽  
Hemanth K N Reddy ◽  
Martin Svenda ◽  
Chantal Abergel ◽  
Kenta Okamoto ◽  
...  

Members of Marseilleviridae, one family of icosahedral giant viruses classified in 2012 have been identified worldwide in all types of environments. The virion shows a characteristic internal membrane extrusion at the five-fold vertices of the capsid, but its structural details need to be elucidated. We now report the 4.4 Å cryo-electron microscopy structure of the Melbournevirus capsid. An atomic model of the major capsid protein (MCP) shows a unique cup structure on the trimer that accommodates additional proteins. A polyalanine model of the penton base protein shows internally extended N- and C-terminals, which indirectly connect to the internal membrane extrusion. The Marseilleviruses share the same orientational organisation of the MCPs as PBCV-1 and CroV, but do not appear to possess a protein akin to the ″tape measure″ of these viruses. Minor capsid proteins named PC-β, zipper, and scaffold are proposed to control the dimensions of the capsid during assembly.


2018 ◽  
Vol 218 (2) ◽  
pp. 598-614 ◽  
Author(s):  
Frank Richter ◽  
Sven Dennerlein ◽  
Miroslav Nikolov ◽  
Daniel C. Jans ◽  
Nataliia Naumenko ◽  
...  

The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.


Science ◽  
1963 ◽  
Vol 142 (3596) ◽  
pp. 1176-1179 ◽  
Author(s):  
B. Chance ◽  
D. F. Parsons

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Keisuke Obara ◽  
Yoshinori Ohsumi

Eukaryotic cells can massively transport their own cytoplasmic contents into a lytic compartment, the vacuole/lysosome, for recycling through a conserved system called autophagy. The key process in autophagy is the sequestration of cytoplasmic contents within a double-membrane structure, the autophagosome. Autophagosome formation requires the elaborate cooperation of Atg (autophagy-related) proteins and lipid molecules. Phosphorylation of phosphatidylinositol (PtdIns) by a PtdIns 3-kinase, Vps34, is a key step in coordinating Atg proteins and lipid molecules. Vps34 forms two distinct protein complexes, only one of which is involved in generating autophagic membranes. Upon induction of autophagy, PtdIns(3)P, the enzymatic product of PtdIns 3-kinase, is massively transported into the lumen of the vacuoleviaautophagy. PtdIns(3)Pis enriched on the inner membrane of the autophagosome. PtdIns(3)Precruits the Atg18−Atg2 complex and presumably other Atg proteins to autophagic membranes, thereby coordinating lipid molecules and Atg proteins.


2017 ◽  
Vol 91 (18) ◽  
Author(s):  
Ryosuke Kobayashi ◽  
Akihisa Kato ◽  
Hiroshi Sagara ◽  
Mizuki Watanabe ◽  
Yuhei Maruzuru ◽  
...  

ABSTRACT VP26 is a herpes simplex virus 1 (HSV-1) small capsomere-interacting protein. In this study, we investigated the function of VP26 in HSV-1-infected cells with the following results. (i) The VP26 null mutation significantly impaired incorporation of minor capsid protein UL25 into nucleocapsids (type C capsids) in the nucleus. (ii) The VP26 mutation caused improper localization of UL25 in discrete punctate domains containing multiple capsid proteins (e.g., the VP5 major capsid protein) in the nucleus; these domains corresponded to capsid aggregates. (iii) The VP26 mutation significantly impaired packaging of replicated viral DNA genomes into capsids but had no effect on viral DNA concatemer cleavage. (iv) The VP26 mutation reduced the frequency of type C capsids, which contain viral DNA but not scaffolding proteins, and produced an accumulation of type A capsids, which lack both viral DNA and scaffold proteins, and had no effect on accumulation of type B capsids, which lack viral DNA but retain cleaved scaffold proteins. Collectively, these results indicated that VP26 was required for efficient viral DNA packaging and proper localization of nuclear capsids. The phenotype of the VP26 null mutation was similar to that reported previously of the UL25 null mutation and of UL25 mutations that preclude UL25 binding to capsids. Thus, VP26 appeared to regulate nucleocapsid maturation by promoting incorporation of UL25 into capsids, which is likely to be required for proper capsid nuclear localization. IMPORTANCE HSV-1 VP26 has been reported to be important for viral replication and virulence in cell cultures and/or mouse models. However, little is known about the function of VP26 during HSV-1 replication, in particular, in viral nucleocapsid maturation although HSV-1 nucleocapsids are estimated to contain 900 copies of VP26. In this study, we present data suggesting that VP26 promoted packaging of HSV-1 DNA genomes into capsids by regulating incorporation of capsid protein UL25 into capsids, which was reported to increase stability of the capsid structure. We also showed that VP26 was required for proper localization of capsids in the infected cell nucleus. This is the first report showing that HSV-1 VP26 is a regulator for nucleocapsid maturation.


2013 ◽  
Vol 117 (1187) ◽  
pp. 97-108
Author(s):  
S. H. Cho ◽  
C. Bil ◽  
R. Adams

Abstract The blended wing-body configuration holds a major structural design challenge at the centre-body where the structure must support both wing bending loads and internal cabin pressure. A membrane approach is proposed which decouples the loads to allow their resistance by two independent structures: an inner membrane for cabin pressure and an outer structure to resist wing loads. A columned multi-bubble fuselage is proposed for the inner membrane structure, which are multispherical configuration to efficiently withstand the pressure loads. Considering this configuration, the carry-through structure can be designed and optimised. Finite element results show a significant reduction of stress level in this design over that for a conventional multi-bubble fuselage. Up to 30% weight reduction is achieved for a military cargo application that requires an extensive area with no structural interruption. For the outer carry-through structure, the topology and shape optimisations of finite element models were performed on the given design domain. The results from the shape and topology optimisations were complementary demonstrating a consistent design approach. The optimisation theory is briefly presented along with the results.


Sign in / Sign up

Export Citation Format

Share Document