scholarly journals Human mobility data from the BBC Pandemic project

Author(s):  
Andrew JK Conlan ◽  
Petra Klepac ◽  
Adam J Kucharski ◽  
Stephen Kissler ◽  
Maria L Tang ◽  
...  

AbstractWe present human mobility data for the United Kingdom collected from the “BBC Pandemic”, a public science project linked to the BBC Four television documentary of the same name. Mobile phone GPS trajectories submitted by users and collected over a 24 hour period were aggregated to construct anonymised origin-destination flux matrices at the local administrative district (LAD). We use these data to explore how mobility patterns change with age and employment status - unique stratifications that are not available from other publicly and privately held mobility data sets. We validate the consistency of the aggregated BBC mobility data set against census workflow data and illustrate how the systematic differences in mobility rates with age affect the risk and pattern of transmission between regions with 18-30 year old’s contributing the greatest risk of transmission to adjacent regions, but older 60-100 years playing the most important role in more remote low-density locations.

Author(s):  
P. Sulis ◽  
E. Manley

<p><strong>Abstract.</strong> The availability of new spatial data represents an unprecedented opportunity to better understand and plan cities. In particular, extensive data sets of human mobility data supply new information that can empower urbanism research to unveil how people use and visit urban places over time, overcoming traditional limitations related to the lack of large, detailed data sets. In this work, we explore patterns of similarities and spatial differences in human mobility flows in London, analysing their temporal variations in relation to the liveliness measured in a number of places. Using data sourced from the Oyster smart card and Twitter, we perform a time-series cluster analysis, exploring the similarity of temporal trends amongst places assigned to each cluster. Results suggest that differences in patterns appear to be related to the central and peripheral location of places, which present two or more temporal trends over the week. The type of transport network connecting the places (Tube, Railways, etc.) also appears to be a factor in determining significant differences. This work contributes to current urbanism research investigating the daily rhythms in cities. It also explores how to use mobility data to classify places according to their temporal features, with the aim of enhancing conventional analysis tools and integrating them with new quantitative information and methods.</p>


2021 ◽  
Author(s):  
Daniel T Citron ◽  
Shankar Iyer ◽  
Robert C Reiner ◽  
David L Smith

Activity Space Maps are a novel global-scale movement and mobility data set which describes how people distribute their time through geographic space. The maps are intended for use by researchers for the purposes of epidemiological modeling. Activity Space Maps are designed to complement existing digitally-collected mobility data sets by quantifying the amount of time that people spend in different locations. This information is important for estimating the duration of contact with the environment and the potential risk of exposure to disease. More concretely, the type of information contained in Activity Space Maps will make it easier to model the spatial transmission patterns of vector-borne diseases like malaria and Dengue fever. We will discuss the motivation for designing Activity Space Maps, how the maps are generated from mobile phone user app location history data, and discuss an example use case demonstrating how such data may be used together with spatial epidemiological data to advance our understanding of spatial disease patterns and the relationship between travel behaviors and infection risk.


Author(s):  
Shuhei Nomura ◽  
Yuta Tanoue ◽  
Daisuke Yoneoka ◽  
Stuart Gilmour ◽  
Takayuki Kawashima ◽  
...  

AbstractIn the COVID-19 era, movement restrictions are crucial to slow virus transmission and have been implemented in most parts of the world, including Japan. To find new insights on human mobility and movement restrictions encouraged (but not forced) by the emergency declaration in Japan, we analyzed mobility data at 35 major stations and downtown areas in Japan—each defined as an area overlaid by several 125-meter grids—from September 1, 2019 to March 19, 2021. Data on the total number of unique individuals per hour passing through each area were obtained from Yahoo Japan Corporation (i.e., more than 13,500 data points for each area). We examined the temporal trend in the ratio of the rolling seven-day daily average of the total population to a baseline on January 16, 2020, by ten-year age groups in five time frames. We demonstrated that the degree and trend of mobility decline after the declaration of a state of emergency varies across age groups and even at the subregional level. We demonstrated that monitoring dynamic geographic and temporal mobility information stratified by detailed population characteristics can help guide not only exit strategies from an ongoing emergency declaration, but also initial response strategies before the next possible resurgence. Combining such detailed data with data on vaccination coverage and COVID-19 incidence (including the status of the health care delivery system) can help governments and local authorities develop community-specific mobility restriction policies. This could include strengthening incentives to stay home and raising awareness of cognitive errors that weaken people's resolve to refrain from nonessential movement.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Esteban Moro ◽  
Dan Calacci ◽  
Xiaowen Dong ◽  
Alex Pentland

AbstractTraditional understanding of urban income segregation is largely based on static coarse-grained residential patterns. However, these do not capture the income segregation experience implied by the rich social interactions that happen in places that may relate to individual choices, opportunities, and mobility behavior. Using a large-scale high-resolution mobility data set of 4.5 million mobile phone users and 1.1 million places in 11 large American cities, we show that income segregation experienced in places and by individuals can differ greatly even within close spatial proximity. To further understand these fine-grained income segregation patterns, we introduce a Schelling extension of a well-known mobility model, and show that experienced income segregation is associated with an individual’s tendency to explore new places (place exploration) as well as places with visitors from different income groups (social exploration). Interestingly, while the latter is more strongly associated with demographic characteristics, the former is more strongly associated with mobility behavioral variables. Our results suggest that mobility behavior plays an important role in experienced income segregation of individuals. To measure this form of income segregation, urban researchers should take into account mobility behavior and not only residential patterns.


2021 ◽  
Vol 4 ◽  
Author(s):  
A. Potgieter ◽  
I. N. Fabris-Rotelli ◽  
Z. Kimmie ◽  
N. Dudeni-Tlhone ◽  
J. P. Holloway ◽  
...  

The COVID-19 pandemic starting in the first half of 2020 has changed the lives of everyone across the world. Reduced mobility was essential due to it being the largest impact possible against the spread of the little understood SARS-CoV-2 virus. To understand the spread, a comprehension of human mobility patterns is needed. The use of mobility data in modelling is thus essential to capture the intrinsic spread through the population. It is necessary to determine to what extent mobility data sources convey the same message of mobility within a region. This paper compares different mobility data sources by constructing spatial weight matrices at a variety of spatial resolutions and further compares the results through hierarchical clustering. We consider four methods for constructing spatial weight matrices representing mobility between spatial units, taking into account distance between spatial units as well as spatial covariates. This provides insight for the user into which data provides what type of information and in what situations a particular data source is most useful.


2014 ◽  
Vol 11 (100) ◽  
pp. 20140834 ◽  
Author(s):  
Xiao-Yong Yan ◽  
Chen Zhao ◽  
Ying Fan ◽  
Zengru Di ◽  
Wen-Xu Wang

Despite the long history of modelling human mobility, we continue to lack a highly accurate approach with low data requirements for predicting mobility patterns in cities. Here, we present a population-weighted opportunities model without any adjustable parameters to capture the underlying driving force accounting for human mobility patterns at the city scale. We use various mobility data collected from a number of cities with different characteristics to demonstrate the predictive power of our model. We find that insofar as the spatial distribution of population is available, our model offers universal prediction of mobility patterns in good agreement with real observations, including distance distribution, destination travel constraints and flux. By contrast, the models that succeed in modelling mobility patterns in countries are not applicable in cities, which suggests that there is a diversity of human mobility at different spatial scales. Our model has potential applications in many fields relevant to mobility behaviour in cities, without relying on previous mobility measurements.


Author(s):  
Siyuan Liu ◽  
Shaojie Tang ◽  
Jiangchuan Zheng ◽  
Lionel M. Ni

Learning human mobility behaviors from location-sensing data are crucial to mobility data mining because of its potential to address a range of analytical purposes in mobile context reasoning, including exploration, inference, and prediction. However, existing approaches suffer from two practical problems: temporal and spatial sparsity. To address these shortcomings, we present two unsupervised learning methods to model the mobility behaviors of multiple users (i.e., a population), considering efficiency and accuracy. These methods intelligently overcome the sparsity in individual data by seeking temporal commonality among users’ heterogeneous location behaviors. The advantages of our models are highlighted through experiments on several real-world mobility data sets, which also show how our methods can realize the three analytical purposes in a unified manner.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takahiro Yabe ◽  
Kota Tsubouchi ◽  
Naoya Fujiwara ◽  
Takayuki Wada ◽  
Yoshihide Sekimoto ◽  
...  

Abstract While large scale mobility data has become a popular tool to monitor the mobility patterns during the COVID-19 pandemic, the impacts of non-compulsory measures in Tokyo, Japan on human mobility patterns has been under-studied. Here, we analyze the temporal changes in human mobility behavior, social contact rates, and their correlations with the transmissibility of COVID-19, using mobility data collected from more than 200K anonymized mobile phone users in Tokyo. The analysis concludes that by April 15th (1 week into state of emergency), human mobility behavior decreased by around 50%, resulting in a 70% reduction of social contacts in Tokyo, showing the strong relationships with non-compulsory measures. Furthermore, the reduction in data-driven human mobility metrics showed correlation with the decrease in estimated effective reproduction number of COVID-19 in Tokyo. Such empirical insights could inform policy makers on deciding sufficient levels of mobility reduction to contain the disease.


2015 ◽  
Vol 18 (2) ◽  
pp. 417-428 ◽  
Author(s):  
Pedro G. Lind ◽  
Adriano Moreira

AbstractWe present a study on human mobility at small spatial scales. Differently from large scale mobility, recently studied through dollar-bill tracking and mobile phone data sets within one big country or continent, we report Brownian features of human mobility at smaller scales. In particular, the scaling exponents found at the smallest scales is typically close to one-half, differently from the larger values for the exponent characterizing mobility at larger scales. We carefully analyze 12-month data of the Eduroam database within the Portuguese university of Minho. A full procedure is introduced with the aim of properly characterizing the human mobility within the network of access points composing the wireless system of the university. In particular, measures of flux are introduced for estimating a distance between access points. This distance is typically non-Euclidean, since the spatial constraints at such small scales distort the continuum space on which human mobility occurs. Since two different exponents are found depending on the scale human motion takes place, we raise the question at which scale the transition from Brownian to non-Brownian motion takes place. In this context, we discuss how the numerical approach can be extended to larger scales, using the full Eduroam in Europe and in Asia, for uncovering the transition between both dynamical regimes.


2017 ◽  
Vol 4 (5) ◽  
pp. 160950 ◽  
Author(s):  
Cecilia Panigutti ◽  
Michele Tizzoni ◽  
Paolo Bajardi ◽  
Zbigniew Smoreda ◽  
Vittoria Colizza

The recent availability of large-scale call detail record data has substantially improved our ability of quantifying human travel patterns with broad applications in epidemiology. Notwithstanding a number of successful case studies, previous works have shown that using different mobility data sources, such as mobile phone data or census surveys, to parametrize infectious disease models can generate divergent outcomes. Thus, it remains unclear to what extent epidemic modelling results may vary when using different proxies for human movements. Here, we systematically compare 658 000 simulated outbreaks generated with a spatially structured epidemic model based on two different human mobility networks: a commuting network of France extracted from mobile phone data and another extracted from a census survey. We compare epidemic patterns originating from all the 329 possible outbreak seed locations and identify the structural network properties of the seeding nodes that best predict spatial and temporal epidemic patterns to be alike. We find that similarity of simulated epidemics is significantly correlated to connectivity, traffic and population size of the seeding nodes, suggesting that the adequacy of mobile phone data for infectious disease models becomes higher when epidemics spread between highly connected and heavily populated locations, such as large urban areas.


Sign in / Sign up

Export Citation Format

Share Document