scholarly journals DeCiFering the Elusive Cancer Cell Fraction in Tumor Heterogeneity and Evolution

2021 ◽  
Author(s):  
Gryte Satas ◽  
Simone Zaccaria ◽  
Mohammed El-Kebir ◽  
Benjamin J. Raphael

AbstractMost tumors are heterogeneous mixtures of normal cells and cancer cells, with individual cancer cells distinguished by somatic mutations that accumulated during the evolution of the tumor. The fundamental quantity used to measure tumor heterogeneity from somatic single-nucleotide variants (SNVs) is the Cancer Cell Fraction (CCF), or proportion of cancer cells that contain the SNV. However, in tumors containing copy-number aberrations (CNAs) – e.g. most solid tumors – the estimation of CCFs from DNA sequencing data is challenging because a CNA may alter the mutation multiplicity, or number of copies of an SNV. Existing methods to estimate CCFs rely on the restrictive Constant Mutation Multiplicity (CMM) assumption that the mutation multiplicity is constant across all tumor cells containing the mutation. However, the CMM assumption is commonly violated in tumors containing CNAs, and thus CCFs computed under the CMM assumption may yield unrealistic conclusions about tumor heterogeneity and evolution. The CCF also has a second limitation for phylogenetic analysis: the CCF measures the presence of a mutation at the present time, but SNVs may be lost during the evolution of a tumor due to deletions of chromosomal segments. Thus, SNVs that co-occur on the same phylogenetic branch may have different CCFs.In this work, we address these limitations of the CCF in two ways. First, we show how to compute the CCF of an SNV under a less restrictive and more realistic assumption called the Single Split Copy Number (SSCN) assumption. Second, we introduce a novel statistic, the descendant cell fraction (DCF), that quantifies both the prevalence of an SNV and the past evolutionary history of SNVs under an evolutionary model that allows for mutation losses. That is, SNVs that co-occur on the same phylogenetic branch will have the same DCF. We implement these ideas in an algorithm named DeCiFer. DeCiFer computes the DCFs of SNVs from read counts and copy-number proportions and also infers clusters of mutations that are suitable for phylogenetic analysis. We show that DeCiFer clusters SNVs more accurately than existing methods on simulated data containing mutation losses. We apply DeCiFer to sequencing data from 49 metastatic prostate cancer samples and show that DeCiFer produces more parsimonious and reasonable reconstructions of tumor evolution compared to previous approaches. Thus, DeCiFer enables more accurate quantification of intra-tumor heterogeneity and improves downstream inference of tumor evolution.Code availabilitySoftware is available at https://github.com/raphael-group/decifer

2018 ◽  
Author(s):  
An-Shun Tai ◽  
Chien-Hua Peng ◽  
Shih-Chi Peng ◽  
Wen-Ping Hsieh

AbstractMultistage tumorigenesis is a dynamic process characterized by the accumulation of mutations. Thus, a tumor mass is composed of genetically divergent cell subclones. With the advancement of next-generation sequencing (NGS), mathematical models have been recently developed to decompose tumor subclonal architecture from a collective genome sequencing data. Most of the methods focused on single-nucleotide variants (SNVs). However, somatic copy number aberrations (CNAs) also play critical roles in carcinogenesis. Therefore, further modeling subclonal CNAs composition would hold the promise to improve the analysis of tumor heterogeneity and cancer evolution. To address this issue, we developed a two-way mixture Poisson model, named CloneDeMix for the deconvolution of read-depth information. It can infer the subclonal copy number, mutational cellular prevalence (MCP), subclone composition, and the order in which mutations occurred in the evolutionary hierarchy. The performance of CloneDeMix was systematically assessed in simulations. As a result, the accuracy of CNA inference was nearly 93% and the MCP was also accurately restored. Furthermore, we also demonstrated its applicability using head and neck cancer samples from TCGA. Our results inform about the extent of subclonal CNA diversity, and a group of candidate genes that probably initiate lymph node metastasis during tumor evolution was also discovered. Most importantly, these driver genes are located at 11q13.3 which is highly susceptible to copy number change in head and neck cancer genomes. This study successfully estimates subclonal CNAs and exhibit the evolutionary relationships of mutation events. By doing so, we can track tumor heterogeneity and identify crucial mutations during evolution process. Hence, it facilitates not only understanding the cancer development but finding potential therapeutic targets. Briefly, this framework has implications for improved modeling of tumor evolution and the importance of inclusion of subclonal CNAs.


2017 ◽  
Author(s):  
Marek Cmero ◽  
Cheng Soon Ong ◽  
Ke Yuan ◽  
Jan Schröder ◽  
Kangbo Mo ◽  
...  

We present SVclone, a computational method for inferring the cancer cell fraction of structural variant breakpoints from whole-genome sequencing data. We validate our approach using simulated and real tumour samples, and demonstrate its utility on 2,778 whole-genome sequenced tumours. We find a subset of liver, breast and ovarian cancer cases with decreased overall survival that have subclonally enriched copy-number neutral rearrangements, an observation that could not be discovered with currently available methods.


2019 ◽  
Author(s):  
Ahmed Ibrahim Samir Khalil ◽  
Anupam Chattopadhyay ◽  
Amartya Sanyal

AbstractMotivationHyperploidy and segmental aneuploidy are hallmarks of cancer cells due to chromosome segregation errors and genomic instability. In such situations, accurate aneuploidy profiling of cancer data is critical for calibration of copy number (CN)-detection tools. Additionally, cancer cell populations suffer from different levels of clonal heterogeneity and aneuploidy alterations over time. The degree of heterogeneity adversely affects the segregation of the depth of coverage (DOC) signal into integral CN states. This, in turn, strongly influences the reliability of this data for ploidy profiling and copy number variation (CNV) analysis.ResultsWe developed AStra framework for aneuploidy profiling of cancer data and assessing their suitability for copy number analysis without any prior knowledge of the input sequencing data. AStra estimates the best-fit aneuploidy profile as the spectrum with most genomic segments around integral CN states. We employ this spectrum to extract the CN-associated features such as the homogeneity score (HS), whole-genome ploidy level, and CN correction factor. The HS measures the percentage of genomic regions around CN states. It is used as a reliability assessment of sequencing data for downstream aneuploidy profiling and CNV analysis. We evaluated the accuracy of AStra using 31 low-coverage datasets from 20 cancer cell lines. AStra successfully identified the aneuploidy spectrum of complex cell lines with HS greater than 75%. Benchmarking against nQuire tool showed that AStra is superior in detecting the ploidy level using both low- and high-coverage data. Furthermore, AStra accurately estimated the ploidy of 26/27 strains of MCF7 (hyperploid) cell line which exhibit varied levels of aneuploidy spectrum and heterogeneity. Remarkably, we found that HS is strongly correlated with the doubling time of these strains.Availability and implementationAStra is an open source software implemented in Python and is available at https://github.com/AISKhalil/AStra


2019 ◽  
Author(s):  
Gryte Satas ◽  
Simone Zaccaria ◽  
Geoffrey Mon ◽  
Benjamin J. Raphael

AbstractMotivationSingle-cell DNA sequencing enables the measurement of somatic mutations in individual tumor cells, and provides data to reconstruct the evolutionary history of the tumor. Nearly all existing methods to construct phylogenetic trees from single-cell sequencing data use single-nucleotide variants (SNVs) as markers. However, most solid tumors contain copy-number aberrations (CNAs) which can overlap loci containing SNVs. Particularly problematic are CNAs that delete an SNV, thus returning the SNV locus to the unmutated state. Such mutation losses are allowed in some models of SNV evolution, but these models are generally too permissive, allowing mutation losses without evidence of a CNA overlapping the locus.ResultsWe introduce a novel loss-supported evolutionary model, a generalization of the infinite sites and Dollo models, that constrains mutation losses to loci with evidence of a decrease in copy number. We design a new algorithm, Single-Cell Algorithm for Reconstructing the Loss-supported Evolution of Tumors (Scarlet), that infers phylogenies from single-cell tumor sequencing data using the loss-supported model and a probabilistic model of sequencing errors and allele dropout. On simulated data, we show that Scarlet outperforms current single-cell phylogeny methods, recovering more accurate trees and correcting errors in SNV data. On single-cell sequencing data from a metastatic colorectal cancer patient, Scarlet constructs a phylogeny that is both more consistent with the observed copy-number data and also reveals a simpler monooclonal seeding of the metastasis, contrasting with published reports of polyclonal seeding in this patient. Scarlet substantially improves single-cell phylogeny inference in tumors with CNAs, yielding new insights into the analysis of tumor evolution.AvailabilitySoftware is available at github.com/raphael-group/[email protected]


Cell Systems ◽  
2021 ◽  
Author(s):  
Gryte Satas ◽  
Simone Zaccaria ◽  
Mohammed El-Kebir ◽  
Benjamin J. Raphael

2021 ◽  
Vol 22 (14) ◽  
pp. 7698
Author(s):  
Sara Peri ◽  
Alessio Biagioni ◽  
Giampaolo Versienti ◽  
Elena Andreucci ◽  
Fabio Staderini ◽  
...  

Chemotherapy is still widely used as a coadjutant in gastric cancer when surgery is not possible or in presence of metastasis. During tumor evolution, gatekeeper mutations provide a selective growth advantage to a subpopulation of cancer cells that become resistant to chemotherapy. When this phenomenon happens, patients experience tumor recurrence and treatment failure. Even if many chemoresistance mechanisms are known, such as expression of ATP-binding cassette (ABC) transporters, aldehyde dehydrogenase (ALDH1) activity and activation of peculiar intracellular signaling pathways, a common and universal marker for chemoresistant cancer cells has not been identified yet. In this study we subjected the gastric cancer cell line AGS to chronic exposure of 5-fluorouracil, cisplatin or paclitaxel, thus selecting cell subpopulations showing resistance to the different drugs. Such cells showed biological changes; among them, we observed that the acquired chemoresistance to 5-fluorouracil induced an endothelial-like phenotype and increased the capacity to form vessel-like structures. We identified the upregulation of thymidine phosphorylase (TYMP), which is one of the most commonly reported mutated genes leading to 5-fluorouracil resistance, as the cause of such enhanced vasculogenic ability.


2021 ◽  
Author(s):  
Yujie Jiang ◽  
Kaixian Yu ◽  
Shuangxi Ji ◽  
Seung Jun Shin ◽  
Shaolong Cao ◽  
...  

Subpopulations of tumor cells characterized by mutation profiles may confer differential fitness and consequently influence prognosis of cancers. Understanding subclonal architecture has the potential to provide biological insight in tumor evolution and advance precision cancer treatment. Recent methods comprehensively integrate single nucleotide variants (SNVs) and copy number aberrations (CNAs) to reconstruct subclonal architecture using whole-genome or whole-exome sequencing (WGS, WES) data from bulk tumor samples. However, the commonly used Bayesian methods require a large amount of computational resources, a prior knowledge of the number of subclones, and extensive post-processing. Regularized likelihood modeling approach, never explored for subclonal reconstruction, can inherently address these drawbacks. We therefore propose a model-based method, Clonal structure identification through pair-wise Penalization, or CliP, for clustering subclonal mutations without prior knowledge or post-processing. The CliP model is applicable to genomic regions with or without CNAs. CliP demonstrates high accuracy in subclonal reconstruction through extensive simulation studies. Utilizing the well-established regularized likelihood framework, CliP takes only 16 hours to process WGS data from 2,778 tumor samples in the ICGC-PCAWG study, and 38 hours to process WES data from 9,564 tumor samples in the TCGA study. In summary, a penalized likelihood framework for subclonal reconstruction will help address intrinsic drawbacks of existing methods and expand the scope of computational analysis for cancer evolution in large cancer genomic studies. The associated software tool is freely available at: https://github.com/wwylab/CliP.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Marek Cmero ◽  
◽  
Ke Yuan ◽  
Cheng Soon Ong ◽  
Jan Schröder ◽  
...  

2019 ◽  
Author(s):  
Hoon Kim ◽  
Nam Nguyen ◽  
Kristen Turner ◽  
Sihan Wu ◽  
Jihe Liu ◽  
...  

Extrachromosomal DNA (ecDNA) amplification promotes high oncogene copy number, intratumoral genetic heterogeneity, and accelerated tumor evolution1–3, but its frequency and clinical impact are not well understood. Here we show, using computational analysis of whole-genome sequencing data from 1,979 cancer patients, that ecDNA amplification occurs in at least 26% of human cancers, of a wide variety of histological types, but not in whole blood or normal tissue. We demonstrate a highly significant enrichment for oncogenes on amplified ecDNA and that the most common recurrent oncogene amplifications arise on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number matched linear DNA, coupled with enhanced chromatin accessibility. Patients whose tumors have ecDNA-based oncogene amplification showed increase of cell proliferation signature activity, greater likelihood of lymph node spread at initial diagnosis, and significantly shorter survival, even when controlled for tissue type, than do patients whose cancers are not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification plays a central role in driving the poor outcome for patients with some of the most aggressive forms of cancers.


2018 ◽  
Vol 35 (11) ◽  
Author(s):  
Hiroki Ishihara ◽  
Satoshi Yamashita ◽  
Satoshi Fujii ◽  
Kazunari Tanabe ◽  
Hirofumi Mukai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document