scholarly journals The dynamic interactive network of long non-coding RNAs and chromatin accessibility facilitates erythroid differentiation

2021 ◽  
Author(s):  
Yunxiao Ren ◽  
Junwei Zhu ◽  
Yuanyuan Han ◽  
Pin Li ◽  
Hongzhu Qu ◽  
...  

AbstractErythroid differentiation is a dynamic process regulated by multiple factors, while the interaction between long non-coding RNAs and chromatin accessibility and its influence on erythroid differentiation remains unclear. To elucidate this interaction, we employed hematopoietic stem cells, multipotent progenitor cells, common myeloid progenitor cells, megakaryocyte-erythroid progenitor cells, and erythroblasts from human cord blood as an erythroid differentiation model to explore the coordinated regulatory functions of lncRNAs and chromatin accessibility in erythropoiesis by integrating RNA-Seq and ATAC-Seq data. We revealed that the integrated network of chromatin accessibility and LncRNAs exhibits stage-specific changes throughout the erythroid differentiation process, and that the changes at the EB stage of maturation are dramatic. We identified a subset of stage-specific lncRNAs and transcription factors (TFs) that coordinate with chromatin accessibility during erythroid differentiation, in which lncRNAs are key regulators of terminal erythroid differentiation via a lncRNA-TF-gene network. LncRNA PCED1B-AS1 was revealed to regulate terminal erythroid differentiation by coordinating GATA1 dynamically binding to the chromatin during erythroid differentiation. DANCR, another lncRNA that is highly expressed at the MEP stage, was verified to promote erythroid differentiation by compromising megakaryocyte differentiation and coordinating with chromatin accessibility and TFs, such as RUNX1. Overall, our results identified the interactive network of lncRNAs and chromatin accessibility in erythropoiesis and provide novel insights into erythroid differentiation and abundant resources for further study.Key PointsLncRNAs regulate erythroid differentiation through coordinating with chromatin accessibility.The integrative multi-omics analysis reveals stage-specific interaction network of LncRNAs and chromatin accessibility in erythropoiesis.

Author(s):  
Yunxiao Ren ◽  
Junwei Zhu ◽  
Yuanyuan Han ◽  
Pin Li ◽  
Jing Wu ◽  
...  

Erythroid differentiation is a dynamic process regulated by multiple factors, while the interaction between long non-coding RNAs and chromatin accessibility and its influence on erythroid differentiation remains unclear. To elucidate this interaction, we employed hematopoietic stem cells, multipotent progenitor cells, common myeloid progenitor cells, megakaryocyte-erythroid progenitor cells, and erythroblasts from human cord blood as an erythroid differentiation model to explore the coordinated regulatory functions of lncRNAs and chromatin accessibility by integrating RNA-Seq and ATAC-Seq data. We revealed that the integrated network of chromatin accessibility and lncRNAs exhibits stage-specific changes throughout the erythroid differentiation process, and that the changes at the EB stage of maturation are dramatic. We identified a subset of stage-specific lncRNAs and transcription factors (TFs) that associate with chromatin accessibility during erythroid differentiation, in which lncRNAs are key regulators of terminal erythroid differentiation via a lncRNA-TF-gene network. LncRNA PCED1B-AS1 was revealed to regulate terminal erythroid differentiation by coordinating GATA1 dynamically binding to the chromatin and interacting with cytoskeleton network during erythroid differentiation. DANCR, another lncRNA that is highly expressed at the MEP stage, was verified to promote erythroid differentiation by compromising megakaryocyte differentiation and coordinating with chromatin accessibility and TFs, such as RUNX1. Overall, our results identified the associated network of lncRNAs and chromatin accessibility in erythropoiesis and provide novel insights into erythroid differentiation and abundant resources for further study.


2019 ◽  
Vol 116 (36) ◽  
pp. 17841-17847 ◽  
Author(s):  
Michael A. Willcockson ◽  
Samuel J. Taylor ◽  
Srikanta Ghosh ◽  
Sean E. Healton ◽  
Justin C. Wheat ◽  
...  

Pu.1 is an ETS family transcription factor (TF) that plays critical roles in erythroid progenitors by promoting proliferation and blocking terminal differentiation. However, the mechanisms controlling expression and down-regulation of Pu.1 during early erythropoiesis have not been defined. In this study, we identify the actions of Runx1 and Pu.1 itself at the Pu.1 gene Upstream Regulatory Element (URE) as major regulators of Pu.1 expression in Burst-Forming Unit erythrocytes (BFUe). During early erythropoiesis, Runx1 and Pu.1 levels decline, and chromatin accessibility at the URE is lost. Ectopic expression of Runx1 or Pu.1, both of which bind the URE, prevents Pu.1 down-regulation and blocks terminal erythroid differentiation, resulting in extensive ex vivo proliferation and immortalization of erythroid progenitors. Ectopic expression of Runx1 in BFUe lacking a URE fails to block terminal erythroid differentiation. Thus, Runx1, acting at the URE, and Pu.1 itself directly regulate Pu.1 levels in erythroid cells, and loss of both factors is critical for Pu.1 down-regulation during terminal differentiation. The molecular mechanism of URE inactivation in erythroid cells through loss of TF binding represents a distinct pattern of Pu.1 regulation from those described in other hematopoietic cell types such as T cells which down-regulate Pu.1 through active repression. The importance of down-regulation of Runx1 and Pu.1 in erythropoiesis is further supported by genome-wide analyses showing that their DNA-binding motifs are highly overrepresented in regions that lose chromatin accessibility during early erythroid development.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 532-532
Author(s):  
Maria-Riera Piqué-Borràs ◽  
Frederik Otzen Bagger ◽  
Matheus Filgueira Bezerra ◽  
Amber Louwaige ◽  
Sabine Juge ◽  
...  

Pure erythroleukemia (PEL) is a very aggressive, but poorly understood form of acute myeloid leukemia characterized by malignant accumulation of erythroid progenitor cells. A novel t(1;16)(p31;q24) chromosomal translocation leading to expression of a fusion between the nuclear factor I A (NFIA) and the ETO2 transcriptional co-regulator (a.k.a. CBFA2T3 or MTG16) has been identified in pediatric patients with PEL. Based on the function of the fusion partners, we hypothesized that NFIA-ETO2 (N-E) might initiate PEL by interfering with erythroid differentiation. To investigate its function, we cloned a full-length ORF and retrovirally expressed N-E in primary mouse bone marrow (BM)- and fetal liver (FL)-derived erythroblasts (EB). N-E expression significantly increased proliferation and blocked differentiation of EB. N-E expressing BM-derived hematopoietic stem and progenitor cells (HSPC) could be plated in erythropoietin (EPO)-containing methylcellulose (MC) for up to 3 rounds. Expression of N-E deletion mutants lacking the NFIA DNA-binding, the ETO2 NHR2 or NHR4 (ΔNHR4) transcriptional repression domains were unable to block erythroid differentiation. Notably, interfering with the ETO2-NHR2 oligomerization domain by overexpressing a competing peptide overcame the N-E-mediated differentiation block. Transplantation of N-E-expressing BM-derived HSPC into irradiated syngenic mice did not induce any disease suggesting the need of genetic cooperation. As TP53 gain-of-function (GOF) mutations are molecular hallmarks of PEL, we explored functional cooperation by using a conditional TP53R248Q allele. Interestingly, the TP53 status did not affect EB in vitro proliferation or differentiation. However, N-E expression increased proliferation of TP53R248Q+ EB and resulted in the formation of abnormal round and dense colonies in MC that could be serially propagated. In addition, transplantation of N-E-expressing TP53R248Q+ EB into irradiated recipients induced a transplantable PEL-like disease after a median latency of 4 months. Symptomatic mice presented with anemia, thrombocytopenia, multi-organ tumor cell infiltration and increased white blood cell counts. To better understand the molecular mechanism, we compared the gene expression signatures before and 24 hours after induced differentiation of FL-derived EB expressing WT or the inactive ΔNHR4 N-E mutant, in presence or absence of TP53R248Q. Principal component analysis (PCA) revealed a clear separation between the transcriptomes of WT EB expressing either the active or the inactive ΔNHR4 N-E (PC1:54.7%) and by their erythroid differentiation stage (PC2:9.07%). Overall, we observed 3753 (FDR<0.05, logFC>1.5) differentially expressed genes. Many of the significantly higher expressed genes (2313/3753) were related to hematopoietic stemness (GSEAs, p<0.001). Almost 10% of the significantly lower expressed genes (92/1440) were linked to the erythroid lineage development and to erythropoietic targets of NFIA or the erythroid master regulator GATA1. Interestingly, we also found reduced expression of genes encoding for ETO2-interacting transcription factors including TAL1 and KLF1. Despite a critical role on disease progression, PCA showed only minimal changes in the N-E expression signature in presence or absence of TP53R248Q with only 12 genes differently expressed (FDR<0.05, logFC>1). These genes were previously shown to be oncogenic mediators of TP53-GOF mutations, related to metabolism and transcriptional regulation. Interestingly, the signature of differentially expressed genes in N-E transformed FL-derived EB were significantly differentially expressed in tumor cells from pediatric but not adult PEL patients (p=0.00045), indicating the pediatric origin of the fusion. Collectively, we found that the PEL-associated N-E fusion blocks erythroid differentiation, and cooperates with a TP53-GOF mutation to induce a PEL-like disease in mice that phenocopies the human disease. Mechanistically, its activity seems to correlate with repression of erythroid regulatory genes controlled by the fusion partners NFIA, ETO2, and the erythroid master regulator GATA1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 356-356
Author(s):  
Schneider K. Rebekka ◽  
Monica Schenone ◽  
Monica Ferreira Ventura ◽  
Fabian Beier ◽  
Tim H. Bruemmendorf ◽  
...  

Abstract Heterozygous deletion of RPS14 occurs in del(5q) MDS and has been linked to impaired erythropoiesis, characteristic of this disease subtype. We previously generated a mouse model with conditional inactivation of Rps14 and demonstrated a p53-dependent erythroid differentiation defect with apoptosis at the transition from polychromatic to orthochromatic erythroblasts resulting in age-dependent progressive anemia, megakaryocyte dysplasia, and loss of hematopoietic stem cell (HSC) quiescence. We now sought to determine the mechanistic basis for the anemia using unbiased, quantitative mass spectrometry in erythroid progenitor cells. We found powerful induction of proteins involved in innate immune signaling, particularly the danger associated molecular pattern (DAMP) heterodimeric S100A8/S100A9 proteins. We found significantly increased S100a8 in the erythroid progenitor populations affected by the differentiation block (RIII-RIV population) and in monocytes and macrophages of Rps14 haploinsufficient bone marrows, all representing cells of the erythroblastic niche. Recombinant S100A8 was sufficient to impair erythropoiesis in wild-type cells. We rescued the erythroid differentiation defect in Rps14 haploinsufficient HSCs by genetic inactivation of S100a8 expression using CRISPR/Cas-mediated gene inactivation in primary mouse Rps14 haploinsufficient HSPC. We validated the association between induction of S100A8 and a severe erythroid phenotype in bone marrow samples of patients with del(5q) MDS. To examine whether ribosomal haploinsufficiency also leads to activation of S100A8 in patients with del(5q) MDS, we measured S100A8 expression using immunofluorescence in bone marrow biopsies from MDS patients with and without del(5q). In del(5q) MDS, the frequency of S100A8-positive cells was associated with disease severity, as reflected by transfusion burden. RPS14, CSNK1A1 and miR-145 are universally co-deleted in the 5q- syndrome and each represent different clinical features of del(5q) MDS in murine models. Haploinsufficiency of miR-145 or -146a also induces inappropriate activation of innate immune signaling. To analyze the combinatorial effect of haploinsufficiency Rps14, Csnk1a1 and miRNA-145, we transduced hematopoietic stem and progenitor cells (HSPC) from compound haploinsufficient Rps14 and Csnk1a1 mice and stably knocked down both miR-145/miR-146a by retrovirus-mediated overexpression of respective target sequences. Compound haploinsufficiency of Rps14, Csnk1a1 and miR-145/146a led to a progressive anemia comparable to Rps14 haploinsufficiency with splenomegaly and an erythroid differentiation defect at the RIII/RIV population, indicating that the anemia is mainly driven by Rps14 haploinsufficiency. Bone marrow histology demonstrated the typical 5q-phenoytpe of megakaryocytes, in line with significant thrombocytosis. At 10 months of age, hematopoietic stem and progenitor cells were significantly increased (lineagelow ckit+ Sca1+; LSK), in particular multipotent progenitor cells (MPPs; lineagelow ckit+ Sca1+ CD48- CD150+) to significantly higher extents than in solely Rps14 or Csnk1a1 haploinsufficient cells. We next asked if compound haploinsufficiency of the three 5q-genes has combinatorial or synergistic effects on S100a8 expression. Compound haploinsufficiency of Csnk1a1, Rps14 and miR-145/146a induced the highest expression of S100a8 in monocytes, while haploinsufficiency of Rps14 alone induced the highest expression of S100a8 in the RIII erythroid population, suggesting that cell-type specific induction mediates the phenotype. Our data indicate an unexpected link between haploinsufficiency for a ribosomal gene, Rps14, activation of S100A8, and inhibition of erythropoiesis. We demonstrate that compound haploinsufficiency for Csnk1a1 and miR145/146a with Rps14 haploinsuffciency increases the expression of S100a8, mainly in monocytes, and recapitulates the phenotype of del(5q) MDS by cooperating, cell-type specific effects. Disclosures Platzbecker: Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Boehringer: Research Funding.


2008 ◽  
Vol 28 (24) ◽  
pp. 7394-7401 ◽  
Author(s):  
Andre M. Pilon ◽  
Murat O. Arcasoy ◽  
Holly K. Dressman ◽  
Serena E. Vayda ◽  
Yelena D. Maksimova ◽  
...  

ABSTRACT Erythroid Krüppel-like factor (EKLF) is a Krüppel-like transcription factor identified as a transcriptional activator and chromatin modifier in erythroid cells. EKLF-deficient (Eklf −/− ) mice die at day 14.5 of gestation from severe anemia. In this study, we demonstrate that early progenitor cells fail to undergo terminal erythroid differentiation in Eklf −/− embryos. To discover potential EKLF target genes responsible for the failure of erythropoiesis, transcriptional profiling was performed with RNA from wild-type and Eklf −/− early erythroid progenitor cells. These analyses identified significant perturbation of a network of genes involved in cell cycle regulation, with the critical regulator of the cell cycle, E2f2, at a hub. E2f2 mRNA and protein levels were markedly decreased in Eklf −/− early erythroid progenitor cells, which showed a delay in the G1-to-S-phase transition. Chromatin immunoprecipitation analysis demonstrated EKLF occupancy at the proximal E2f2 promoter in vivo. Consistent with the role of EKLF as a chromatin modifier, EKLF binding sites in the E2f2 promoter were located in a region of EKLF-dependent DNase I sensitivity in early erythroid progenitor cells. We propose a model in which EKLF-dependent activation and modification of the E2f2 locus is required for cell cycle progression preceding terminal erythroid differentiation.


2018 ◽  
Vol 115 (43) ◽  
pp. E10109-E10118 ◽  
Author(s):  
Koichi R. Katsumura ◽  
Charu Mehta ◽  
Kyle J. Hewitt ◽  
Alexandra A. Soukup ◽  
Isabela Fraga de Andrade ◽  
...  

By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 −77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin−Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2–linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2–dependent pathologies.


Blood ◽  
2010 ◽  
Vol 116 (15) ◽  
pp. 2812-2821 ◽  
Author(s):  
Fabiana Perna ◽  
Nadia Gurvich ◽  
Ruben Hoya-Arias ◽  
Omar Abdel-Wahab ◽  
Ross L. Levine ◽  
...  

Abstract L3MBTL1, the human homolog of the Drosophila L(3)MBT polycomb group tumor suppressor gene, is located on chromosome 20q12, within the common deleted region identified in patients with 20q deletion-associated polycythemia vera, myelodysplastic syndrome, and acute myeloid leukemia. L3MBTL1 is expressed within hematopoietic CD34+ cells; thus, it may contribute to the pathogenesis of these disorders. To define its role in hematopoiesis, we knocked down L3MBTL1 expression in primary hematopoietic stem/progenitor (ie, CD34+) cells isolated from human cord blood (using short hairpin RNAs) and observed an enhanced commitment to and acceleration of erythroid differentiation. Consistent with this effect, overexpression of L3MBTL1 in primary hematopoietic CD34+ cells as well as in 20q− cell lines restricted erythroid differentiation. Furthermore, L3MBTL1 levels decrease during hemin-induced erythroid differentiation or erythropoietin exposure, suggesting a specific role for L3MBTL1 down-regulation in enforcing cell fate decisions toward the erythroid lineage. Indeed, L3MBTL1 knockdown enhanced the sensitivity of hematopoietic stem/progenitor cells to erythropoietin (Epo), with increased Epo-induced phosphorylation of STAT5, AKT, and MAPK as well as detectable phosphorylation in the absence of Epo. Our data suggest that haploinsufficiency of L3MBTL1 contributes to some (20q−) myeloproliferative neoplasms, especially polycythemia vera, by promoting erythroid differentiation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3736-3736
Author(s):  
Tanabe Mikoto ◽  
Nguyen Hoang Maianh ◽  
Kohei Hosokawa ◽  
Noriharu Nakagawa ◽  
Luis Espinoza ◽  
...  

[Background] Glycosylphosphatidylinositol-anchored proteins (GPI-APs) on hematopoietic stem progenitor cells (HSPCs) may have some roles in the negative regulation of the HSPC commitment induced by inflammatory cytokines given the fact that progenies of GPI(-) HSPC are often detected in patients with immune-mediated bone marrow (BM) failure. CD109, one of the GPI-APs expressed by keratinocytes and HSPCs in humans, serves as a TGF-β co-receptor and is reported to inhibit TGF-β signaling in keratinocytes; however, the role of CD109 on HSPCs remains unknown. We previously demonstrated that TGF-β induced erythroid differentiation of TF-1 cells, a myeloid leukemia cell line that expresses CD109, in a dose-dependent manner and that knockout of the CD109 gene resulted in erythroid differentiation of TF-1 cells cultured in fetal bovine serum-containing medium, suggesting an inhibitory role of CD109 in the erythroid differentiation of HSPCs induced by low levels of TGF-β (Blood, 2018. 132 (Suppl.1) :3874). However, as most CD109 KO TF-1 cells changed into erythroid cells, they were unsuitable for investigating the role of CD109 in the erythroid differentiation induced by TGF-β. To overcome this issue, we prepared TF-1 cells and cord blood (CB) HSPCs in which the CD109 expression was transiently downregulated, and attempted to further clarify the role of CD109. [Methods] TF-1 cells and CD34+ cells isolated from CB mononuclear cells were treated with siRNA that was complementary to CD109 mRNA. CD109 knockdown cells were cultured for 4 days in serum-free medium supplemented with stem cell factor, thrombopoietin, and erythropoietin with or without TGF-β. In separate experiments, TF-1 cells were treated with phosphatidylinositol-specific phospholipase C (PIPL-C) treatment for 1 hour and were incubated in the presence or absence of TGF-β. CD109 KO TF-1 cells were incubated in serum-free medium (StemPro-34 SFM) for 14 days and their phenotype was determined using flow cytometry (FCM). The erythroid differentiation of the cells was assessed by testing the expression of glycophorin A (GPA) and iron staining. [Results] The down-regulation of CD109 in TF-1 cells by the siRNA treatment increased GPA expression in response to 12 ng/ml of TGF-β from 1.77% to 35.6%. The transient depletion of GPI-APs by PIPL-C also augmented the GPA expression induced by TGF-β from 1.27% to 6.77%. In both BM of healthy individuals and CB, CD109 was more abundantly expressed in Lin-CD34+CD38-CD90+CD45RA- hematopoietic stem cells (HSCs) than in Lin-CD34+CD38-CD90-CD45RA- multipotent progenitors (MPPs) and Lin-CD34+CD38+ HSPCs (Fig. 1). The treatment of CB cells with siRNA reduced the CD109 expression in Lin-CD34+CD38+ cells from 55.9% to 23.1%. TGF-β induced the expression of GPA in Lin-CD34+CD38+CD123-CD45RA- megakaryocyte-erythrocyte progenitor cells (MEPs) of CD109 knockdown cells to a greater degree than the control counterpart (Fig. 2). During 14-day serum-free culture, GPA-positive CD109 KO TF-1 cells died, and similarly to WT TF-1 cells, most surviving CD109 KO TF-1 cells were GPA-negative. TGF-β treatment induced erythroid differentiation in CD109 KO TF-1 cells to a greater degree than in WT TF-1 cells. [Conclusions] CD109 plays a key role in the inhibition of TF-1 erythroid differentiation in response to TGF-β. CD109 may suppress TGF-β signaling, and the lack of CD109 may make PIGA-mutated HSPCs more sensitive to TGF-β, thus leading to the preferential commitment of the mutant erythroid progenitor cells to mature red blood cells in immune-mediated BM failure. Disclosures Yamazaki: Novartis Pharma K.K.: Honoraria; Sanofi K.K.: Honoraria; Nippon Shinyaku Co., Ltd.: Honoraria. Nakao:Novartis Pharma K.K: Honoraria; Bristol-Myers Squibb: Honoraria; Takeda Pharmaceutical Company Limited: Honoraria; Celgene: Honoraria; Ono Pharmaceutical: Honoraria; Chugai Pharmaceutical Co.,Ltd: Honoraria; Kyowa Kirin: Honoraria; Alaxion Pharmaceuticals: Honoraria; Ohtsuka Pharmaceutical: Honoraria; Daiichi-Sankyo Company, Limited: Honoraria; Janssen Pharmaceutical K.K.: Honoraria; SynBio Pharmaceuticals: Consultancy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-32
Author(s):  
Gordon G. L. Wong ◽  
Gabriela Krivdova ◽  
Olga I. Gan ◽  
Jessica L. McLeod ◽  
John E. Dick ◽  
...  

Micro RNA (miRNA)-mediated gene silencing, largely mediated by the Argonaute (AGO) family proteins, is a post-transcriptional gene expression control mechanism that has been shown to regulate hematopoietic stem and progenitor cells (HSPCs) quiescence, self-renewal, proliferation, and differentiation. Interestingly, only the function of AGO2 in hematopoiesis has been investigated. O'Carroll et al. (2007) showed that AGO2 knockout in mice bone marrow cells interferes with B220low CD43- IgM-pre-B cells and peripheral B cell differentiation and impairs Ter119high, CD71high erythroid precursors maturation. However, the functional significance of other AGO proteins in the regulation of stemness and lineage commitment remains unclear. AGO submembers, AGO1-4 in humans, are traditionally believed to act redundantly in their function. However, our previous proteomic analysis from sorted populations of the human hematopoietic hierarchy shows each sub-member is differentially expressed during HSPCs development, suggesting each sub-member may have a specialized function in hematopoiesis. Here, we conducted CRISPR-Cas9 mediated knockout of AGO1-4 in human cord blood derived long-term (LT-) and short-term hematopoietic stem cells (ST-HSCs) and investigated the impact of the loss of function of individual AGOs in vitro and in vivo in xenograft assays. From the in vitro experiment, we cultured CRISPR-edited LT- or ST-HSCs in a single cell manner on 96-well plates pre-cultured with murine MS5 stroma cells in erythro-myeloid differentiation condition. The colony-forming capacity and lineage commitment of each individual HSC is assessed on day 17 of the culture. Initial data showed that AGO1, AGO2 and AGO3 knockout decreased the colony formation efficacy of both LT- and ST-HSCs, suggesting AGO1, AGO2 and AGO3 are involved in LT- and ST-HSCs proliferation or survival. As for lineage output, AGO1 knockout increases CD56+ natural killer cell commitment in LT-HSCs and erythroid differentiation in ST-HSCs; AGO2 knockout increases erythroid differentiation in both LT- and ST-HSCs and decreases myeloid differentiation in ST-HSCs; while AGO4 knockout seems to decrease erythroid output. For the in vivo experiment, we xenotransplanted AGO1 and AGO2 knockout LT-HSCs in irradiated immunodeficient NSG mice and assessed the change in LT-HSCs engraftment level and lineage differentiation profile at 12- and 24-week time points. We found that AGO2 knockout increased CD45+ engraftment at both 12- and 24-weeks. Aligning with our in vitro data, AGO2 knockout increases GlyA+ erythroid cells at 12- and 24-weeks. The increase in GlyA+ erythroid cells is a consequence of the 2-fold increase in GlyA+ CD71+ erythroid precursor cells, recapitulating previous findings that AGO2 knockout in mice impairs CD71high erythroid precursor maturation leading to the accumulation of undifferentiated CD71+ erythroid precursors (O'Carroll et al., 2007). Accumulation of early progenitors of the erythroid lineage, including the common myeloid progenitors (CMPs) and myelo-erythroid progenitor (MEPs) were observed, as well as their progeny including CD33+ myeloid and CD41+ megakaryocytes. For the myeloid lineage, AGO2 knockout shifts myeloid differentiation toward CD66b+ granulocytes from CD14+ monocytes. For lymphoid, AGO2 knockout decreases CD19+ CD10- CD20+ mature B-lymphoid cells, which again aligns with previous AGO2 knockout mice results. On the other hand, AGO1 knockout LT-HSCs share some similar phenotype with AGO2 knockout LT-HSCs, where AGO1 knockout increases CD71+ erythroid precursors. However, AGO1 knockout in LT-HSCs also results in unique phenotypes, with a decrease in neutrophil formation and an increase in CD4+ CD8+ T progenitor cells are observed. AGO3 and AGO4 knockout experiments are in progress. In summary, our AGO2 knockout experiments recapitulate the reported results from murine studies but also illustrate a more complete role of AGO2 in hematopoietic lineage differentiation. Moreover, AGO knockout experiments of individual submembers are revealing novel insights into their role in the regulation of stemness and lineage commitment of LT-HSCs and ST-HSCs. These data point to a unique role of different AGO isoforms in lineage commitment in human HSCs and argue against redundant functioning. Disclosures Dick: Bristol-Myers Squibb/Celgene: Research Funding.


2021 ◽  
Author(s):  
Pamela Himadewi ◽  
Xue Qing David Wang ◽  
Fan Feng ◽  
Haley Gore ◽  
Yushuai Liu ◽  
...  

Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named Hereditary Persistence of Fetal Hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3 prime end of the β-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.


Sign in / Sign up

Export Citation Format

Share Document