ctcf site
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 11)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 35 (21-22) ◽  
pp. 1401-1402
Author(s):  
Benoit G. Bruneau

In this issue of Genes & Development, Amândio and colleagues (pp. 1490–1509) dissect the function of a cluster of several CTCF binding sites in the HoxD cluster by iterative deletions in mice. They found additive functions for some, and intriguingly found that some sites function as insulators, while others function as anchors for enhancer–promoter interactions. These functions vary depending on developmental context. The work provides new insights into the roles played by CTCF in regulating developmental patterns and 3D chromatin organization.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Pamela Himadewi ◽  
Xue Qing David Wang ◽  
Fan Feng ◽  
Haley Gore ◽  
Yushuai Liu ◽  
...  

Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named Hereditary Persistence of Fetal Hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3' end of the β-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sophie Ottema ◽  
Roger Mulet-Lazaro ◽  
Claudia Erpelinck-Verschueren ◽  
Stanley van Herk ◽  
Marije Havermans ◽  
...  

AbstractChromosomal rearrangements are a frequent cause of oncogene deregulation in human malignancies. Overexpression of EVI1 is found in a subgroup of acute myeloid leukemia (AML) with 3q26 chromosomal rearrangements, which is often therapy resistant. In AMLs harboring a t(3;8)(q26;q24), we observed the translocation of a MYC super-enhancer (MYC SE) to the EVI1 locus. We generated an in vitro model mimicking a patient-based t(3;8)(q26;q24) using CRISPR-Cas9 technology and demonstrated hyperactivation of EVI1 by the hijacked MYC SE. This MYC SE contains multiple enhancer modules, of which only one recruits transcription factors active in early hematopoiesis. This enhancer module is critical for EVI1 overexpression as well as enhancer-promoter interaction. Multiple CTCF binding regions in the MYC SE facilitate this enhancer-promoter interaction, which also involves a CTCF binding site upstream of the EVI1 promoter. We hypothesize that this CTCF site acts as an enhancer-docking site in t(3;8) AML. Genomic analyses of other 3q26-rearranged AML patient cells point to a common mechanism by which EVI1 uses this docking site to hijack enhancers active in early hematopoiesis.


2021 ◽  
Author(s):  
Naama Hirsch ◽  
Idit Dahan ◽  
Eva Dhaene ◽  
Matan Avni ◽  
Sarah Vergult ◽  
...  

Structural variants (SVs) can affect protein-coding sequences as well as gene regulatory elements. However, SVs disrupting protein-coding sequences that also function as cis-regulatory elements remain largely uncharacterized. Here, we show that craniosynostosis patients with SVs containing the Histone deacetylase 9 (HDAC9) protein-coding sequence are associated with disruption of TWIST1 regulatory elements that reside within HDAC9 sequence. Based on SVs within the HDAC9-TWIST1 locus, we defined the 3' HDAC9 sequence (~500Kb) as a critical TWIST1 regulatory region, encompassing craniofacial TWIST1 enhancers and CTCF sites. Deletions of either Twist1 enhancers (eTw5-7Δ/Δ) or Ctcf site (CtcfΔ/Δ) within the Hdac9 protein-coding sequence in mice led to decreased Twist1 expression and altered anterior\posterior limb expression patterns of Shh pathway genes. This decreased Twist1 expression results in a smaller sized and asymmetric skull and polydactyly that resembles Twist1+/− mouse phenotype. Chromatin conformation analysis revealed that the Twist1 promoter region interacts with Hdac9 sequences that encompass Twist1 enhancers and a Ctcf site and that interactions depended on the presence of both regulatory regions. Finally, a large inversion of the entire Hdac9 sequence (Hdac9INV/+) in mice that does not disrupt Hdac9 expression but repositions Twist1 regulatory elements showed decreased Twist1 expression and led to a craniosynostosis-like phenotype and polydactyly. Thus, our study elucidated essential components of TWIST1 transcriptional machinery that reside within the HDAC9 sequence, suggesting that SVs, encompassing protein-coding sequence, such as HDAC9, could lead to a phenotype that is not attributed to its protein function but rather to a disruption of the transcriptional regulation of a nearby gene, such as TWIST1.


2021 ◽  
Author(s):  
Pamela Himadewi ◽  
Xue Qing David Wang ◽  
Fan Feng ◽  
Haley Gore ◽  
Yushuai Liu ◽  
...  

Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia. An increase in fetal hemoglobin expression throughout adulthood, a condition named Hereditary Persistence of Fetal Hemoglobin (HPFH), has been found to ameliorate hemoglobinopathies. Deletional HPFH occurs through the excision of a significant portion of the 3 prime end of the β-globin locus, including a CTCF binding site termed 3'HS1. Here, we show that the deletion of this CTCF site alone induces fetal hemoglobin expression in both adult CD34+ hematopoietic stem and progenitor cells and HUDEP-2 erythroid progenitor cells. This induction is driven by the ectopic access of a previously postulated distal enhancer located in the OR52A1 gene downstream of the locus, which can also be insulated by the inversion of the 3'HS1 CTCF site. This suggests that genetic editing of this binding site can have therapeutic implications to treat hemoglobinopathies.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ana Rita Amândio ◽  
Lucille Lopez-Delisle ◽  
Christopher Chase Bolt ◽  
Bénédicte Mascrez ◽  
Denis Duboule

Developmental genes are often controlled by large regulatory landscapes matching topologically associating domains (TADs). In various contexts, the associated chromatin backbone is modified by specific enhancer–enhancer and enhancer–promoter interactions. We used a TAD flanking the mouse HoxD cluster to study how these regulatory architectures are formed and deconstructed once their function achieved. We describe this TAD as a functional unit, with several regulatory sequences acting together to elicit a transcriptional response. With one exception, deletion of these sequences didn’t modify the transcriptional outcome, a result at odds with a conventional view of enhancer function. The deletion and inversion of a CTCF site located near these regulatory sequences did not affect transcription of the target gene. Slight modifications were nevertheless observed, in agreement with the loop extrusion model. We discuss these unexpected results considering both conventional and alternative explanations relying on the accumulation of poorly specific factors within the TAD backbone.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 813-813
Author(s):  
Pamela Himadewi ◽  
Xiaotian Zhang ◽  
Haley Gore ◽  
Xue Qing David Wang

Human β-globin locus consists of at least six genes encoding components of the oxygen transport protein hemoglobin and an upstream locus control region (LCR) containing five DNase I hypersensitive sites. In addition, there are at least four conserved CTCF insulator elements surrounding the locus, which form dynamic chromatin interaction patterns across different cell types in the course of hematopoietic stem and progenitor cells (HSPCs) development. Chromatin conformation of the β-globin locus in normal adult CD34+ HSPCs reveals the formation of three topological associated domains (TADs), in which individual TAD boundaries are demarcated by CTCF sites (Figure 1). By comparing chromatin loop interactions between CD34+ HSPCs and its differentiated erythroid progenitors, we identify a chromatin loop that forms in erythroid progenitors and is not evident in the CD34+ HSPCs. Detailed examination of this loop shows that a DNase I hypersensitivity site, also called 3'HS1, overlaps with a CTCF site that forms a loop with another CTCF site adjacent to OR52A5 gene (Figure 2). To investigate the role of this specific chromatin loop in the regulation of hemoglobin gene expression, we knock out the 3'HS1 CTCF motif in adult CD34+ HSPCs under erythroid differentiation medium by CRISPR/Cas9-mediated gene editing. We find that deletion of 3'HS1 CTCF results in a 2-fold decrease of β-globin (HBB) and a 4-fold increase of the fetal hemoglobin gene encoded by γ-globin (HBG1/2) in erythroid colonies of edited CD34+ cells (Figure 3). Elevation of fetal hemoglobin upon 3'HS1 CTCF deletion was also confirmed in human umbilical cord blood-derived erythroid progenitor-2 cells (HUDEP-2), which results in a 12-fold increase of γ-globin expression (Figure 4). These results suggest that the 3'HS1 CTCF plays a crucial role in regulating the expression of fetal hemoglobin gene, however it remains unclear whether changes in chromatin structure is responsible for these changes. CTCF looping interactions have been described to form under convergent directionality. To validate the role of 3'HS1 CTCF in establishing chromatin interactions at the β-globin locus, we aim to invert this binding motif and evaluate how it disrupts chromatin organization and gene expression at this locus. Deciphering the underlying mechanisms will shed light on how three-dimensional chromatin structure is reorganized in differentiating erythroid cells as it undergoes nuclear condensation. Furthermore, elevation of fetal hemoglobin expression can potentially be a new therapeutic gene editing strategy to treat sickle cell disease and some cases of β-hemoglobinopathies. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Ana Rita Amândio ◽  
Lucille Lopez-Delisle ◽  
Christopher Chase Bolt ◽  
Bénédicte Mascrez ◽  
Denis Duboule

ABSTRACTIn vertebrates, developmental genes are often controlled by large regulatory landscapes matching the dimensions of topologically associating domains (TADs). In various ontogenic contexts, the associated constitutive chromatin backbone is modified by fine-tuned specific variations in enhancer-enhancer and enhancer-promoter interaction profiles. In this work, we take one of the TADs flanking the HoxD gene cluster as a paradigm to address the question of how these complex regulatory architectures are formed and how they are de-constructed once their function has been achieved. We suggest that this TAD can be considered as a coherent functional unit in itself, with several regulatory sequences acting together to elicit a transcriptional response. With one notable exception, the deletion of each of these sequences in isolation did not produce any substantial modification in the global transcriptional outcome of the system, a result at odds with a conventional view of long-range enhancer function. Likewise, both the deletion and inversion of a supposedly critical CTCF site located in a region rich in such sequences did not affect transcription of the target gene. In the latter case, however, slight modifications were observed in interaction profiles in vivo in agreement with the loop extrusion model, despite no apparent functional consequences. We discuss these unexpected results by considering both conventional explanations and an alternative possibility whereby a rather unspecific accumulation of particular factors within the TAD backbone may have a global impact upon transcription.


2019 ◽  
Author(s):  
Luca Nanni ◽  
Cheng Wang ◽  
Freek Manders ◽  
Laszlo Groh ◽  
Paula Haro ◽  
...  

AbstractTopologically associated domains (TADs) are defined as regions of self-interaction. To date, it is unclear how to reconcile TAD structure with CTCF site orientation, which is known to coordinate chromatin loops anchored by Cohesin rings at convergent CTCF site pairs. We first approached this problem by 4C analysis of the FKBP5 locus. This uncovered a CTCF loop encompassing FKBP5 but not its entire TAD. However, adjacent CTCF sites were able to form ‘back-up’ loops and these were located at TAD boundaries. We then analysed the spatial distribution of CTCF patterns along the genome together with a boundary identity conservation ‘gradient’ obtained from primary blood cells. This revealed that divergent CTCF sites are enriched at boundaries and that convergent CTCF sites mark the interior of TADs. This conciliation of CTCF site orientation and TAD structure has deep implications for the further study and engineering of TADs and their boundaries.


2019 ◽  
Vol 116 (27) ◽  
pp. 13424-13433 ◽  
Author(s):  
Fabrice Darbellay ◽  
Célia Bochaton ◽  
Lucille Lopez-Delisle ◽  
Bénédicte Mascrez ◽  
Patrick Tschopp ◽  
...  

In many animal species with a bilateral symmetry, Hox genes are clustered either at one or at several genomic loci. This organization has a functional relevance, as the transcriptional control applied to each gene depends upon its relative position within the gene cluster. It was previously noted that vertebrate Hox clusters display a much higher level of genomic organization than their invertebrate counterparts. The former are always more compact than the latter, they are generally devoid of repeats and of interspersed genes, and all genes are transcribed by the same DNA strand, suggesting that particular factors constrained these clusters toward a tighter structure during the evolution of the vertebrate lineage. Here, we investigate the importance of uniform transcriptional orientation by engineering several alleles within the HoxD cluster, such as to invert one or several transcription units, with or without a neighboring CTCF site. We observe that the association between the tight structure of mammalian Hox clusters and their regulation makes inversions likely detrimental to the proper implementation of this complex genetic system. We propose that the consolidation of Hox clusters in vertebrates, including transcriptional polarity, evolved in conjunction with the emergence of global gene regulation via the flanking regulatory landscapes, to optimize a coordinated response of selected subsets of target genes in cis.


Sign in / Sign up

Export Citation Format

Share Document