scholarly journals Identification of a novel regulator of Clostridioides difficile cortex formation

2021 ◽  
Author(s):  
Megan H. Touchette ◽  
Hector Benito de la Puebla ◽  
Carolina Alves Feliciano ◽  
Benjamin Tanenbaum ◽  
Monica Schenone ◽  
...  

AbstractClostridioides difficile is a leading cause of healthcare-associated infections worldwide. C. difficile infections are transmitted by its metabolically dormant, aerotolerant spore form. Functional spore formation depends on the assembly of two protective layers: a thick layer of modified peptidoglycan known as the cortex layer and a multilayered proteinaceous meshwork known as the coat. We previously identified two spore morphogenetic proteins, SpoIVA and SipL, that are essential for recruiting coat proteins to the developing forespore and making functional spores. While SpoIVA and SipL directly interact, the identities of the proteins they recruit to the forespore remained unknown. We used mass spectrometry-based affinity proteomics to identify proteins that interact with the SpoIVA-SipL complex. These analyses identified the Peptostreptococcaceae family-specific, sporulation-induced bitopic membrane protein CD3457 (renamed SpoVQ) as a protein that interacts with SipL and SpoIVA. Loss of SpoVQ decreased heat-resistant spore formation by ∼5-fold and reduced cortex thickness∼2-fold; the thinner cortex layer of ΔspoVQ spores correlated with higher levels of spontaneous germination (i.e., in the absence of germinant). Notably, loss of SpoVQ in either spoIVA or sipL mutants prevented cortex synthesis altogether and greatly impaired the localization of a SipL-mCherry fusion protein around the forespore. Thus, SpoVQ is a novel regulator of C. difficile cortex synthesis that appears to link cortex and coat formation. The identification of SpoVQ as a spore morphogenetic protein further highlights how Peptostreptococcaceae family-specific mechanisms control spore formation in C. difficile.ImportanceThe Centers for Disease Control has designated Clostridioides difficile as an urgent threat because of its intrinsic antibiotic resistance. C. difficile persists in the presence of antibiotics in part because it makes metabolically dormant spores. While recent work has shown that preventing the formation of infectious spores can reduce C. difficile disease recurrence, more selective anti-sporulation therapies are needed. The identification of spore morphogenetic factors specific to C. difficile would facilitate the development of such therapies. In this study, we identified SpoVQ (CD3457) as a spore morphogenetic protein specific to the Peptostreptococcaceae family that regulates the formation of C. difficile’s protective spore cortex layer. SpoVQ acts in concert with the known spore coat morphogenetic factors, SpoIVA and SipL, to link formation of the protective coat and cortex layers. These data reveal a novel pathway that could be targeted to prevent the formation of infectious C. difficile spores.

2019 ◽  
Author(s):  
Megan H. Touchette ◽  
Hector Benito de la Puebla ◽  
Priyanka Ravichandran ◽  
Aimee Shen

AbstractSpores are the major infectious particle of the Gram-positive nosocomial pathogen, Clostridioides (formerly Clostridium) difficile, but the molecular details of how this organism forms these metabolically dormant cells remain poorly characterized. The composition of the spore coat in C. difficile differs markedly from that defined in the well-studied organism, Bacillus subtilis, with only 25% of the ~70 spore coat proteins being conserved between the two organisms, and only 2 of 9 coat assembly (morphogenetic) proteins defined in B. subtilis having homologs in C. difficile. We previously identified SipL as a clostridia-specific coat protein essential for functional spore formation. Heterologous expression analyses in E. coli revealed that SipL directly interacts with C. difficile SpoIVA, a coat morphogenetic protein conserved in all spore-forming organisms, through SipL’s C-terminal LysM domain. In this study, we show that SpoIVA-SipL binding is essential for C. difficile spore formation and identify specific residues within the LysM domain that stabilize this interaction. Fluorescence microscopy analyses indicate that binding of SipL’s LysM domain to SpoIVA is required for SipL to localize to the forespore, while SpoIVA requires SipL to promote encasement of SpoIVA around the forespore. Since we also show that clostridial LysM domains are functionally interchangeable at least in C. difficile, the basic mechanism for SipL-dependent assembly of clostridial spore coats may be conserved.ImportanceThe metabolically dormant spore-form of the major nosocomial pathogen, Clostridioides difficile, is its major infectious particle. However, the mechanisms controlling the formation of these resistant cell types are not well understood, particularly with respect to its outermost layer, the spore coat. We previously identified two spore morphogenetic proteins in C. difficile: SpoIVA, which is conserved in all spore-forming organisms, and SipL, which is conserved only in the Clostridia. Both SpoIVA and SipL are essential for heat-resistant spore formation and directly interact through SipL’s C-terminal LysM domain. In this study, we demonstrate that the LysM domain is critical for SipL and SpoIVA function, likely by helping recruit SipL to the forespore during spore morphogenesis. We further identified residues within the LysM domain that are important for binding SpoIVA and thus functional spore formation. These findings provide important insight into the molecular mechanisms controlling the assembly of infectious C. difficile spores.


2019 ◽  
Vol 201 (8) ◽  
Author(s):  
Megan H. Touchette ◽  
Hector Benito de la Puebla ◽  
Priyanka Ravichandran ◽  
Aimee Shen

ABSTRACT Spores are the major infectious particle of the Gram-positive nosocomial pathogen Clostridioides difficile (formerly Clostridium difficile), but the molecular details of how this organism forms these metabolically dormant cells remain poorly characterized. The composition of the spore coat in C. difficile differs markedly from that defined in the well-studied organism Bacillus subtilis, with only 25% of the ∼70 spore coat proteins being conserved between the two organisms and with only 2 of 9 coat assembly (morphogenetic) proteins defined in B. subtilis having homologs in C. difficile. We previously identified SipL as a clostridium-specific coat protein essential for functional spore formation. Heterologous expression analyses in Escherichia coli revealed that SipL directly interacts with C. difficile SpoIVA, a coat-morphogenetic protein conserved in all spore-forming organisms, through SipL’s C-terminal LysM domain. In this study, we show that SpoIVA-SipL binding is essential for C. difficile spore formation and identify specific residues within the LysM domain that stabilize this interaction. Fluorescence microscopy analyses indicate that binding of SipL’s LysM domain to SpoIVA is required for SipL to localize to the forespore while SpoIVA requires SipL to promote encasement of SpoIVA around the forespore. Since we also show that clostridial LysM domains are functionally interchangeable at least in C. difficile, the basic mechanism for SipL-dependent assembly of clostridial spore coats may be conserved. IMPORTANCE The metabolically dormant spore form of the major nosocomial pathogen Clostridioides difficile is its major infectious particle. However, the mechanisms controlling the formation of this resistant cell type are not well understood, particularly with respect to its outermost layer, the spore coat. We previously identified two spore-morphogenetic proteins in C. difficile: SpoIVA, which is conserved in all spore-forming organisms, and SipL, which is conserved only in the clostridia. Both SpoIVA and SipL are essential for heat-resistant spore formation and directly interact through SipL’s C-terminal LysM domain. In this study, we demonstrate that the LysM domain is critical for SipL and SpoIVA function, likely by helping recruit SipL to the forespore during spore morphogenesis. We further identified residues within the LysM domain that are important for binding SpoIVA and, thus, functional spore formation. These findings provide important insight into the molecular mechanisms controlling the assembly of infectious C. difficile spores.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Hector Benito de la Puebla ◽  
David Giacalone ◽  
Alexei Cooper ◽  
Aimee Shen

ABSTRACT The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation. IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.


2020 ◽  
Vol 74 (1) ◽  
pp. 545-566
Author(s):  
Aimee Shen

Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.


2020 ◽  
Vol 33 (02) ◽  
pp. 058-066
Author(s):  
Aimee Shen

AbstractThe Gram-positive, spore-forming bacterium, Clostridioides difficile is the leading cause of healthcare-associated infections in the United States, although it also causes a significant number of community-acquired infections. C. difficile infections, which range in severity from mild diarrhea to toxic megacolon, cost more to treat than matched infections, with an annual treatment cost of approximately $6 billion for almost half-a-million infections. These high–treatment costs are due to the high rates of C. difficile disease recurrence (>20%) and necessity for special disinfection measures. These complications arise in part because C. difficile makes metabolically dormant spores, which are the major infectious particle of this obligate anaerobe. These seemingly inanimate life forms are inert to antibiotics, resistant to commonly used disinfectants, readily disseminated, and capable of surviving in the environment for a long period of time. However, upon sensing specific bile salts in the vertebrate gut, C. difficile spores transform back into the vegetative cells that are responsible for causing disease. This review discusses how spores are ideal vectors for disease transmission and how antibiotics modulate this process. We also describe the resistance properties of spores and how they create challenges eradicating spores, as well as promote their spread. Lastly, environmental reservoirs of C. difficile spores and strategies for destroying them particularly in health care environments will be discussed.


2020 ◽  
Author(s):  
Hector Benito de la Puebla ◽  
David Giacalone ◽  
Alexei Cooper ◽  
Aimee Shen

AbstractThe nosocomial pathogen, Clostridioides difficile, is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved coat protein, SpoIVA, and the clostridial-specific coat protein, SipL, which directly interact. Mutations that disrupt their interaction cause coat to mislocalize and decrease functional spore formation. In B. subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to help drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in C. difficile’s SpoIVA ATPase motifs impair functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104 less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but retain binding to ATP enhanced SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele-specific, our data implies that SipL recognizes the ATP-bound form of SpoIVA and highlights the importance of this interaction for functional C. difficile spore formation.ImportanceThe aerotolerant spores formed by the major nosocomial pathogen Clostridioides difficile are its primary infectious particle. However, the mechanism by which this critical cell type is assembled remains poorly characterized, especially with respect to its protective coat layer. We previously showed that binding between the spore morphogenetic proteins, SpoIVA and SipL, regulates coat assembly around the forespore. SpoIVA is widely conserved among spore-forming bacteria, and its ATPase activity is essential for Bacillus subtilis to form functional spores. In this study, we determined that mutations in C. difficile SpoIVA’s ATPase motifs result in relatively minor defects in spore formation in contrast with B. subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in SipL’s C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Bryan Angelo P. Roxas ◽  
Jennifer Lising Roxas ◽  
Rachel Claus-Walker ◽  
Anusha Harishankar ◽  
Asad Mansoor ◽  
...  

AbstractClostridioides difficile infection (CDI) is a major healthcare-associated diarrheal disease. Consistent with trends across the United States, C. difficile RT106 was the second-most prevalent molecular type in our surveillance in Arizona from 2015 to 2018. A representative RT106 strain displayed robust virulence and 100% lethality in the hamster model of acute CDI. We identified a unique 46 KB genomic island (GI1) in all RT106 strains sequenced to date, including those in public databases. GI1 was not found in its entirety in any other C. difficile clade, or indeed, in any other microbial genome; however, smaller segments were detected in Enterococcus faecium strains. Molecular clock analyses suggested that GI1 was horizontally acquired and sequentially assembled over time. GI1 encodes homologs of VanZ and a SrtB-anchored collagen-binding adhesin, and correspondingly, all tested RT106 strains had increased teicoplanin resistance, and a majority displayed collagen-dependent biofilm formation. Two additional genomic islands (GI2 and GI3) were also present in a subset of RT106 strains. All three islands are predicted to encode mobile genetic elements as well as virulence factors. Emergent phenotypes associated with these genetic islands may have contributed to the relatively rapid expansion of RT106 in US healthcare and community settings.


2020 ◽  
Vol 41 (S1) ◽  
pp. s33-s33
Author(s):  
Michihiko Goto ◽  
Erin Balkenende ◽  
Gosia Clore ◽  
Rajeshwari Nair ◽  
Loretta Simbartl ◽  
...  

Background: Enhanced terminal room cleaning with ultraviolet C (UVC) disinfection has become more commonly used as a strategy to reduce the transmission of important nosocomial pathogens, including Clostridioides difficile, but the real-world effectiveness remains unclear. Objectives: We aimed to assess the association of UVC disinfection during terminal cleaning with the incidence of healthcare-associated C. difficile infection and positive test results for C. difficile within the nationwide Veterans Health Administration (VHA) System. Methods: Using a nationwide survey of VHA system acute-care hospitals, information on UV-C system utilization and date of implementation was obtained. Hospital-level incidence rates of clinically confirmed hospital-onset C. difficile infection (HO-CDI) and positive test results with recent healthcare exposures (both hospital-onset [HO-LabID] and community-onset healthcare-associated [CO-HA-LabID]) at acute-care units between January 2010 and December 2018 were obtained through routine surveillance with bed days of care (BDOC) as the denominator. We analyzed the association of UVC disinfection with incidence rates of HO-CDI, HO-Lab-ID, and CO-HA-LabID using a nonrandomized, stepped-wedge design, using negative binomial regression model with hospital-specific random intercept, the presence or absence of UVC disinfection use for each month, with baseline trend and seasonality as explanatory variables. Results: Among 143 VHA acute-care hospitals, 129 hospitals (90.2%) responded to the survey and were included in the analysis. UVC use was reported from 42 hospitals with various implementation start dates (range, June 2010 through June 2017). We identified 23,021 positive C. difficile test results (HO-Lab ID: 5,014) with 16,213 HO-CDI and 24,083,252 BDOC from the 129 hospitals during the study period. There were declining baseline trends nationwide (mean, −0.6% per month) for HO-CDI. The use of UV-C had no statistically significant association with incidence rates of HO-CDI (incidence rate ratio [IRR], 1.032; 95% CI, 0.963–1.106; P = .65) or incidence rates of healthcare-associated positive C. difficile test results (HO-Lab). Conclusions: In this large quasi-experimental analysis within the VHA System, the enhanced terminal room cleaning with UVC disinfection was not associated with the change in incidence rates of clinically confirmed hospital-onset CDI or positive test results with recent healthcare exposure. Further research is needed to understand reasons for lack of effectiveness, such as understanding barriers to utilization.Funding: NoneDisclosures: None


2020 ◽  
Vol 41 (S1) ◽  
pp. s439-s439
Author(s):  
Valerie Beck

Background: It is well known that contaminated surfaces contribute to the transmission of pathogens in healthcare settings, necessitating the need for antimicrobial strategies beyond routine cleaning with momentary disinfectants. A recent publication demonstrated that application of a novel, continuously active antimicrobial surface coating in ICUs resulted in the reduction of healthcare-associated infections. Objective: We determined the general microbial bioburden and incidence of relevant pathogens present in patient rooms at 2 metropolitan hospitals before and after application of a continuously active antimicrobial surface coating. Methods: A continuously active antimicrobial surface coating was applied to patient rooms in intensive care units (ICUs) twice over an 18-month period and in non-ICUs twice over a 6-month study period. The environmental bioburden was assessed 8–16 weeks after each treatment. A 100-cm2 area was swabbed from frequently touched areas in patient rooms: patient chair arm rest, bed rail, TV remote, and backsplash behind the sink. The total aerobic bacteria count was determined for each location by enumeration on tryptic soy agar (TSA); the geometric mean was used to compare bioburden before and after treatment. Each sample was also plated on selective agar for carbapenem-resistant Enterobacteriaceae (CRE), vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and Clostridioides difficile to determine whether pathogens were present. Pathogen incidence was calculated as the percentage of total sites positive for at least 1 of the 4 target organisms. Results: Before application of the antimicrobial coating, total aerobic bacteria counts in ICUs were >1,500 CFU/100 cm2, and at least 30% of the sites were positive for a target pathogen (ie, CRE, VRE, MRSA or C. difficile). In non-ICUs, the bioburden before treatment was at least 500 CFU/100 cm2, with >50% of sites being contaminated with a pathogen. After successive applications of the surface coating, total aerobic bacteria were reduced by >80% in the ICUs and >40% in the non-ICUs. Similarly, the incidence of pathogen-positive sites was reduced by at least 50% in both ICUs and non-ICUs. Conclusions: The use of a continuously active antimicrobial surface coating provides a significant (P < .01) and sustained reduction in aerobic bacteria while also reducing the occurrence of epidemiologically important pathogens on frequently touched surfaces in patient rooms. These findings support the use of novel antimicrobial technologies as an additional layer of protection against the transmission of potentially harmful bacteria from contaminated surfaces to patients.Funding: Allied BioScience provided Funding: for this study.Disclosures: Valerie Beck reports salary from Allied BioScience.


Sign in / Sign up

Export Citation Format

Share Document