spore coat
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 23)

H-INDEX

43
(FIVE YEARS 2)

2022 ◽  
Vol 23 (1) ◽  
pp. 550
Author(s):  
Tiffany Malleck ◽  
Fatima Fekraoui ◽  
Isabelle Bornard ◽  
Céline Henry ◽  
Eloi Haudebourg ◽  
...  

The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores.


2021 ◽  
pp. 2104994
Author(s):  
Qingling Song ◽  
Hongjuan Zhao ◽  
Cuixia Zheng ◽  
Ke Wang ◽  
Hui Gao ◽  
...  
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 606
Author(s):  
Silu Sheng ◽  
Edgardo T. Farinas

Enzymes displayed on the Bacillus subtilis spore coat have several features that are useful for biocatalysis. The enzyme is preimmobilized on an inert surface of the spore coat, which is due to the natural sporulation process. As a result, protein stability can be increased, and they are resistant to environmental changes. Next, they would not lyse under extreme conditions, such as in organic solvents. Furthermore, they can be easily removed from the reaction solution and reused. The laboratory evolved CotA laccase variant T480A-CotA was used to oxidize the following phenolic substrates: (+)-catechin, (−)-epicatechin, and sinapic acid. The kinetic parameters were determined and T480A-CotA had a greater Vmax/Km than wt-CotA for all substrates. The Vmax/Km for T480A-CotA was 4.1, 5.6, and 1.4-fold greater than wt-CotA for (+)-catechin, (−)-epicatechin, and sinapic acid, respectively. The activity of wt-CotA and T480A-CotA was measured at different concentrations from 0–70% in organic solvents (dimethyl sulfoxide, ethanol, methanol, and acetonitrile). The Vmax for T480A-CotA was observed to be greater than the wt-CotA in all organic solvents. Finally, the T480A-CotA was recycled 7 times over a 23-h period and up to 60% activity for (+)-catechin remained. The product yield was up to 3.1-fold greater than the wild-type.


2021 ◽  
Author(s):  
Alise R. Muok ◽  
Dennis Claessen ◽  
Ariane Briegel

AbstractStreptomycetes are sessile bacteria that produce metabolites that impact the behavior of microbial communities. Emerging studies have demonstrated that Streptomyces spores are distributed through various mechanisms, but it remains unclear how spores are transported to their preferred microenvironments, such as plant roots. Here, we show that Streptomyces spores are capable of utilizing the motility machinery of other soil bacteria. Motility assays and microscopy studies reveal that Streptomyces spores are transported to plant tissues by interacting directly with the flagella of both gram-positive and gram-negative bacteria. Genetics experiments demonstrate that this form of motility is facilitated by structural proteins on the spore coat. These results demonstrate that nonmotile bacteria are capable of utilizing the motility machinery of other microbes to complete necessary stages of their lifecycle.


Author(s):  
Rick Ursem ◽  
Bhagyashree Swarge ◽  
Wishwas R. Abhyankar ◽  
Hansuk Buncherd ◽  
Leo J. de Koning ◽  
...  

2021 ◽  
Vol 170 ◽  
pp. 298-306
Author(s):  
Giannina Espina ◽  
Paulina Cáceres-Moreno ◽  
Guillermo Mejías-Navarrete ◽  
Minghua Ji ◽  
Junsong Sun ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 285
Author(s):  
Daniela Krajčíková ◽  
Veronika Bugárová ◽  
Imrich Barák

Bacillus subtilis endospores are exceptionally resistant cells encircled by two protective layers: a petidoglycan layer, termed the cortex, and the spore coat, a proteinaceous layer. The formation of both structures depends upon the proper assembly of a basement coat layer, which is composed of two proteins, SpoIVA and SpoVM. The present work examines the interactions of SpoIVA and SpoVM with coat proteins recruited to the spore surface during the early stages of coat assembly. We showed that the alanine racemase YncD associates with two morphogenetic proteins, SpoIVA and CotE. Mutant spores lacking the yncD gene were less resistant against wet heat and germinated to a greater extent than wild-type spores in the presence of micromolar concentrations of l-alanine. In seeking a link between the coat and cortex formation, we investigated the interactions between SpoVM and SpoIVA and the proteins essential for cortex synthesis and found that SpoVM interacts with a penicillin-binding protein, SpoVD, and we also demonstrated that SpoVM is crucial for the proper localization of SpoVD. This study shows that direct contacts between coat morphogenetic proteins with a complex of cortex-synthesizing proteins could be one of the tools by which bacteria couple cortex and coat formation.


2021 ◽  
Vol 197 ◽  
pp. 111425
Author(s):  
Michal Bodík ◽  
Daniela Krajčíková ◽  
Jakub Hagara ◽  
Eva Majkova ◽  
Imrich Barák ◽  
...  

PLoS Genetics ◽  
2020 ◽  
Vol 16 (12) ◽  
pp. e1009246
Author(s):  
Johana Luhur ◽  
Helena Chan ◽  
Benson Kachappilly ◽  
Ahmed Mohamed ◽  
Cécile Morlot ◽  
...  

How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development.


2020 ◽  
Vol 401 (12) ◽  
pp. 1375-1387 ◽  
Author(s):  
María Pérez-Burgos ◽  
Lotte Søgaard-Andersen

AbstractIn bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.


Sign in / Sign up

Export Citation Format

Share Document