scholarly journals Structural Analysis of Spike Protein Mutations in an Emergent SARS-CoV-2 Variant from the Philippines

2021 ◽  
Author(s):  
Neil Andrew D. Bascos ◽  
Denise Mirano-Bascos ◽  
Cynthia P. Saloma

AbstractA SARS-CoV-2 emergent lineage with multiple signature mutations in the Spike protein region was recently reported with cases centered in Cebu Island, Philippines. Whole genome sequencing revealed that the 33 samples with the Ph-B.1.1.28 emergent variant merit further investigation as they all contain the E484K, N501Y, and P681H Spike mutations previously found in other variants of concern such as the South African B.1.351, the Brazil P.1 and the UK B.1.1.7 variants. This is the first known report of these mutations co-occurring in the same virus. The possible implications of the mutations found in the Spike protein were analyzed for their potential effects on structure, stability, and molecular surface character. The analysis suggests that these mutations could significantly impact the possible interactions of the Spike protein monomer with the ACE2 receptor and neutralizing antibodies and warrants further clinical investigation. Some of the mutations affecting the N and C terminal domains may have effects on Spike monomer and trimer stability. This report provides insights on relevant targets for the design of future diagnostics, therapeutics and vaccines against the evolving SARS-CoV-2 variants in the Philippines.

2021 ◽  
Vol 22 (4) ◽  
pp. 1695
Author(s):  
Bruno O. Villoutreix ◽  
Vincent Calvez ◽  
Anne-Geneviève Marcelin ◽  
Abdel-Majid Khatib

SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike–ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure–function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.


2021 ◽  
Author(s):  
José Afonso Guerra-Assunção ◽  
Paul A. Randell ◽  
Florencia A. T. Boshier ◽  
Michael A. Crone ◽  
Juanita Pang ◽  
...  

AbstractThe appearance of the SARS-CoV-2 lineage B.1.1.7 in the UK in late 2020, associated with faster transmission, sparked the need to find effective ways to monitor its spread. The set of mutations that characterise this lineage include a deletion in position 69 and 70 of the spike protein, which is known to be associated with Spike Gene Target Failure (SGTF) in a commonly used three gene diagnostic qPCR assay. The lower cost and faster turnaround times compared to whole genome sequencing make the use of qPCR for monitoring of the variant spread an attractive proposition. However, there are several potential issues with this approach. Here we use 826 SARS-CoV-2 samples collected in a hospital setting as part of the Hospital Onset COVID Infection (HOCI) study where qPCR was used for viral detection, followed by whole genome sequencing (WGS), to identify the factors to consider when using SGTF to infer lineage B.1.1.7 prevalence in a hospital setting, with potential implications for locations where this variant has recently been introduced.


Author(s):  
Dhiraj Mannar ◽  
James W Saville ◽  
Xing Zhu ◽  
Shanti S. Srivastava ◽  
Alison M. Berezuk ◽  
...  

SummaryThe recently emerged SARS-CoV-2 South African (B. 1.351) and Brazil/Japan (P.1) variants of concern (VoCs) include a key mutation (N501Y) found in the UK variant that enhances affinity of the spike protein for its receptor, ACE2. Additional mutations are found in these variants at residues 417 and 484 that appear to promote antibody evasion. In contrast, the Californian VoCs (B.1.427/429) lack the N501Y mutation, yet exhibit antibody evasion. We engineered spike proteins to express these RBD VoC mutations either in isolation, or in different combinations, and analyzed the effects using biochemical assays and cryo-EM structural analyses. Overall, our findings suggest that the emergence of new SARS-CoV-2 variant spikes can be rationalized as the result of mutations that confer either increased ACE2 affinity, increased antibody evasion, or both, providing a framework to dissect the molecular factors that drive VoC evolution.


Author(s):  
Constantinos Kurt Wibmer ◽  
Frances Ayres ◽  
Tandile Hermanus ◽  
Mashudu Madzivhandila ◽  
Prudence Kgagudi ◽  
...  

AbstractSARS-CoV-2 501Y.V2, a novel lineage of the coronavirus causing COVID-19, contains multiple mutations within two immunodominant domains of the spike protein. Here we show that this lineage exhibits complete escape from three classes of therapeutically relevant monoclonal antibodies. Furthermore 501Y.V2 shows substantial or complete escape from neutralizing antibodies in COVID-19 convalescent plasma. These data highlight the prospect of reinfection with antigenically distinct variants and may foreshadow reduced efficacy of current spike-based vaccines.


2021 ◽  
Author(s):  
Michael H. Peters ◽  
Oscar Bastidas ◽  
Daniel S. Kokron ◽  
Christopher E. Henze

AbstractMonitoring and strategic response to variants in SARS-CoV-2 represents a considerable challenge in the current pandemic, as well as potentially future viral outbreaks of similar magnitude. In particular mutations and deletions involving the virion’s prefusion Spike protein has significant potential impact on vaccines and therapeutics that utilize this key structural viral protein in their mitigation strategies. In this study, we have demonstrated how dominant energetic landscape mappings (“glue points”) coupled with sequence alignment information can potentially identify or flag key residue mutations and deletions associated with variants. Surprisingly, we also found excellent homology of stabilizing residue glue points across the lineage of β coronavirus Spike proteins, and we have termed this as “sequence homologous glue points”. In general, these flagged residue mutations and/or deletions are then computationally studied in detail using all-atom biocomputational molecular dynamics over approximately one microsecond in order to ascertain structural and energetic changes in the Spike protein associated variants. Specifically, we examined both a theoretically-based triple mutant and the so called UK or B.1.1.7 variant. For the theoretical triple mutant, we demonstrated through Alanine mutations, which help “unglue” key residue-residue interactions, that these three key stabilizing residues could cause the transition of Down to Up protomer states, where the Up protomer state allows binding of the prefusion Spike protein to hACE2 host cell receptors, whereas the Down state is believed inaccessible. For the B.1.1.7 variant, we demonstrated the critical importance of D614G and N5017 on the structure and binding of the Spike protein associated variant. In particular, we had previously identified D614 as a key glue point in the inter-protomer stabilization of the Spike protein. Other mutations and deletions associated with this variant did not appear to play a pivotal role in structure or binding changes. The mutant D614G is a structure breaking Glycine mutation demonstrating a relatively large hinge angle and highly stable Up conformation in agreement with previous studies. In addition, we demonstrate that the mutation N501Y may significantly increase the Spike protein binding to hACE2 cell receptors through its interaction with Y41 of hACE2 forming a potentially strong hydrophobic residue binding pair. We note that these two key mutations, D614G and N501Y, are also found in the so-called South African (SA; B.1.351) variant of SARS-CoV-2. Future studies along these lines are therefore aimed at mapping glue points to residue mutations and deletions of associated prefusion Spike protein variants in order to help direct and optimize efforts aimed at the mitigation of this deadly virion.


Science ◽  
2021 ◽  
pp. eabi4506
Author(s):  
David R. Martinez ◽  
Alexandra Schäfer ◽  
Sarah R. Leist ◽  
Gabriela De la Cruz ◽  
Ande West ◽  
...  

The emergence of SARS-CoV in 2003 and SARS-CoV-2 in 2019 highlights the need to develop universal vaccination strategies against the broader Sarbecovirus subgenus. Using chimeric spike designs, we demonstrate protection against challenge from SARS-CoV, SARS-CoV-2, SARS-CoV-2 B.1.351, bat CoV (Bt-CoV) RsSHC014, and a heterologous Bt-CoV WIV-1 in vulnerable aged mice. Chimeric spike mRNAs induced high levels of broadly protective neutralizing antibodies against high-risk Sarbecoviruses. In contrast, SARS-CoV-2 mRNA vaccination not only showed a marked reduction in neutralizing titers against heterologous Sarbecoviruses, but SARS-CoV and WIV-1 challenge in mice resulted in breakthrough infections. Chimeric spike mRNA vaccines efficiently neutralized D614G, mink cluster five, and the UK B.1.1.7., and South African B.1.351 variants of concern. Thus, multiplexed-chimeric spikes can prevent SARS-like zoonotic coronavirus infections with pandemic potential.


2021 ◽  
Author(s):  
Ephraim Fass ◽  
Gal Zizelski Valenci ◽  
Mor Rubinstein ◽  
Paul J Freidlin ◽  
Shira Rosencwaig ◽  
...  

ABSTRACTThe changing nature of the corona virus of the SARS-CoV-2 pandemic poses unprecedented challenges to the world’s health systems. New and virulent emerging spike gene variants, such as the UK 20I/501Y.V1 and South African 20H/501Y.V2, could jeopardize global efforts to produce immunity and reduce mortality. These challenges require effective real-time genomic surveillance solutions that the medical community can quickly adopt. The SARS-CoV-2 spike protein mediates host receptor recognition and entry into the cell and therefore, it is most susceptible to generation of variants with increased transmissibility and pathogenicity. The spike protein is also the primary target of neutralizing antibodies in COVID-19 patients and the most common antigen for induction of effective vaccine immunity. Therefore, tight monitoring of the spike protein gene variants is key to mitigating COVID-19 spread and vaccine escape mutants. Currently, the ARTIC method for SARS-CoV-2 whole genome sequencing is applied worldwide. However, this method commonly requires more than 96 hours (4-5 days) from start to finish and at present high sample sequence demands, sequencing resources are quickly exhausted. In this work, we present HiSpike, a method for high-throughput targeted next generation sequencing (NGS) of the spike gene. This simple three-step method can be completed in less than 30 hours and can sequence 10-fold more samples compared to the conventional ARTIC method and at a fraction of the cost. HiSpike was proven valid, and has identified, at high quality, multiple spike variants from real-time field samples, such as the UK and the South African variants. This method will certainly be effective in discovering future spike mutations. Therefore, running HiSpike for full sequencing of the spike gene of all positive SARS-CoV-2 samples could be considered for near real-time detection of known and emerging spike mutations as they evolve. HiSpike provides affordable sequencing options to help laboratories conserve resources, hence it provides a tool for widespread monitoring, that can support critical knowledge-based decisions.


Author(s):  
Frederic Grabowski ◽  
Marek Kochańczyk ◽  
Tomasz Lipniacki

AbstractThe Variant of Concern (VOC)-202012/01 (also known as B.1.1.7) is a rapidly growing lineage of SARS-CoV-2. In January 2021, VOC-202012/01 constituted about 80% of SARS-CoV-2 genomes sequenced in England and was present in 27 out of 29 countries that reported at least 50 viral genomes. As this strain will likely spread globally towards fixation, it is important to monitor its molecular evolution. Based on GISAID data we systematically estimated growth rates of mutations acquired by the VOC lineage to find that L18F substitution in viral spike protein has initiated a substrain characterized by replicative advantage of 1.70 [95% CI: 1.56–1.96] in relation to the remaining VOC-202012/01 substrains. The L18F mutation is of significance because when recently analyzed in the context of the South African strain 501Y.V2 it has been found to compromise binding of neutralizing antibodies. We additionally indicate three mutations that were acquired by VOC-202012/01 in the receptor binding motif of spike, specifically E484K, F490S, and S494P, that may also give rise to escape mutants. Such mutants may hinder efficiency of existing vaccines and expand in response to the increasing after-infection or vaccine-induced seroprevalence.


2021 ◽  
Author(s):  
AJ Venkatakrishnan ◽  
Praveen Anand ◽  
Patrick Lenehan ◽  
Pritha Ghosh ◽  
Rohit Suratekar ◽  
...  

Abstract The raging COVID-19 pandemic in India and reports of “vaccine breakthrough infections” globally have raised alarm mandating the characterization of the immuno-evasive features of SARS-CoV-2. Here, we systematically analyzed over 1.3 million SARS-CoV-2 genomes from 178 countries and performed whole-genome viral sequencing from 53 COVID-19 patients, including 20 vaccine breakthrough infections. We identified 116 Spike protein mutations that increased in prevalence during at least one surge in SARS-CoV-2 test positivity in any country over a three-month window. Deletions in the Spike protein N-terminal domain (NTD) are highly enriched for these ‘surge-associated mutations’ (Odds Ratio = 18.2, 95% CI: 7.53-48.7; p=1.465x10-18). In the recent COVID-19 surge in India, an NTD deletion (ΔF157/R158) increased over 10-fold in prevalence from February 2021 (1.1%) to April 2021 (15%). During the recent surge in Chile, an NTD deletion (Δ246-253) increased rapidly over 30-fold in prevalence from January 2021 (0.86%) to April 2021 (33%). Strikingly, these simultaneously emerging deletions associated with surges in different parts of the world both occur at an antigenic supersite that is targeted by neutralizing antibodies. Finally, we generated clinically annotated SARS-CoV-2 whole genome sequences and identified deletions within this NTD antigenic supersite in a patient with vaccine breakthrough infection (Δ156-164) and other deletions from unvaccinated severe COVID-19 patients that could represent emerging deletion-prone regions. Overall, the expanding repertoire of Spike protein deletions throughout the pandemic and their association with case surges and vaccine breakthrough infections point to antigenic minimalism as an emerging evolutionary strategy for SARS-CoV-2 to evade immune responses. This study highlights the urgent need to sequence SARS-CoV-2 genomes at a larger scale globally and to mandate a public health policy for transparent reporting of relevant clinical annotations (e.g. vaccination status) in order to aid the development of comprehensive therapeutic strategies.


2021 ◽  
Author(s):  
Ahmed M. Moustafa ◽  
Colleen Bianco ◽  
Lidiya Denu ◽  
Azad Ahmed ◽  
Brandy Neide ◽  
...  

AbstractRapid whole genome sequencing of SARS-CoV-2 has presented the ability to detect new emerging variants of concern in near real time. Here we report the genome of a virus isolated in Pennsylvania in March 2021 that was identified as lineage B.1.1.7 (VOC-202012/01) that also harbors the E484K spike mutation, which has been shown to promote “escape” from neutralizing antibodies in vitro. We compare this sequence to the only 5 other B.1.1.7+E484K genomes from Pennsylvania, all of which were isolated in mid March. Beginning in February 2021, only a small number (n=60) of isolates with this profile have been detected in the US, and only a total of 253 have been reported globally (first in the UK in December 2020). Comparative genomics of all currently available high coverage B.1.1.7+E484K genomes (n=235) available on GISAID suggested the existence of 7 distinct groups or clonal complexes (CC; as defined by GNUVID) bearing the E484K mutation raising the possibility of 7 independent acquisitions of the E484K spike mutation in each background. Phylogenetic analysis suggested the presence of at least 3 distinct clades of B.1.1.7+E484K circulating in the US, with the Pennsylvanian isolates belonging to two distinct clades. Increased genomic surveillance will be crucial for detection of emerging variants of concern that can escape natural and vaccine induced immunity.


Sign in / Sign up

Export Citation Format

Share Document