scholarly journals Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation

Author(s):  
Xianding Deng ◽  
Miguel A Garcia-Knight ◽  
Mir M. Khalid ◽  
Venice Servellita ◽  
Candace Wang ◽  
...  

AbstractWe identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.427/B.1.429 to denote its 2 lineages, the variant emerged around May 2020 and increased from 0% to >50% of sequenced cases from September 1, 2020 to January 29, 2021, exhibiting an 18.6-24% increase in transmissibility relative to wild-type circulating strains. The variant carries 3 mutations in the spike protein, including an L452R substitution. Our analyses revealed 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation found in the B.1.1.7, B.1.351, and P.1 variants. Antibody neutralization assays showed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California associated with decreased antibody neutralization warrants further investigation.

Author(s):  
Emmanuel Lecorche ◽  
Côme Daniau ◽  
Kevin La ◽  
Faiza Mougari ◽  
Hanaa Benmansour ◽  
...  

Abstract Background Post-surgical infections due to Mycobacterium chimaera appeared as a novel nosocomial threat in 2015, with a worldwide outbreak due to contaminated heater-cooler units used in open chest surgery. We report the results of investigations conducted in France including whole genome sequencing comparison of patient and HCU isolates. Methods We sought M. chimaera infection cases from 2010 onwards through national epidemiological investigations in healthcare facilities performing cardiopulmonary bypass together with a survey on good practices and systematic heater-cooler unit microbial analyses. Clinical and HCU isolates were subjected to whole genome sequencing analyzed with regards to the reference outbreak strain Zuerich-1. Results Only two clinical cases were shown to be related to the outbreak, although 23% (41/175) heater-cooler units were declared positive for M. avium complex. Specific measures to prevent infection were applied in 89% (50/56) healthcare facilities although only 14% (8/56) of them followed the manufacturer maintenance recommendations. Whole genome sequencing comparison showed that the clinical isolates and 72% (26/36) of heater-cooler unit isolates belonged to the epidemic cluster. Within clinical isolates, 5 to 9 non-synonymous single nucleotide polymorphisms were observed, among which an in vivo mutation in a putative efflux pump gene observed in a clinical isolate obtained for one patient under antimicrobial treatment. Conclusions Cases of post-surgical M. chimaera infections were declared to be rare in France, although heater-cooler units were contaminated as in other countries. Genomic analyses confirmed the connection to the outbreak and identified specific single nucleotide polymorphisms, including one suggesting fitness evolution in vivo.


Author(s):  
Kelvin Kai-Wang To ◽  
Xin Li ◽  
David Christopher Lung ◽  
Jonathan Daniel Ip ◽  
Wan-Mui Chan ◽  
...  

Abstract A false-positive SARS-CoV-2 RT-PCR result can lead to unnecessary public-health measures. We report two individuals whose respiratory specimens were contaminated by inactivated SARS-CoV-2 vaccine strain(CoronaVac), likely at vaccination premises. Incidentally, whole-genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


2017 ◽  
Vol 84 (4) ◽  
Author(s):  
Prerna Vohra ◽  
Marie Bugarel ◽  
Frances Turner ◽  
Guy H. Loneragan ◽  
Jayne C. Hope ◽  
...  

ABSTRACTSalmonella entericais an animal and zoonotic pathogen of worldwide importance.Salmonellaserovars that differ in their host and tissue tropisms exist. Cattle are an important reservoir of human nontyphoidal salmonellosis, and contaminated bovine peripheral lymph nodes enter the food chain via ground beef. The relative abilities of different serovars to survive within the bovine lymphatic system are poorly understood and constrain the development of control strategies. This problem was addressed by developing a massively parallel whole-genome sequencing method to study mixed-serovar infectionsin vivo.Salmonellaserovars differ genetically by naturally occurring single nucleotide polymorphisms (SNPs) in certain genes. It was hypothesized that these SNPs could be used as markers to simultaneously identify serovars in mixed populations and quantify the abundance of each member in a population. The performance of the method was validatedin vitrousing simulated pools containing up to 11 serovars in various proportions. It was then applied to study serovar survivalin vivoin cattle challenged orally with the same 11 serovars. All the serovars successfully colonized the bovine lymphatic system, including the peripheral lymph nodes, and thus pose similar risks of zoonosis. This method enables the fates of multiple genetically unmodified strains to be evaluated simultaneously in a single animal. It could be useful in reducing the number of animals required to study mixed-strain infections and in testing the cross-protective efficacy of vaccines and treatments. It also has the potential to be applied to diverse bacterial species which possess shared but polymorphic alleles.IMPORTANCEWhile someSalmonellaserovars are more frequently isolated from lymph nodes rather than the feces and environment of cattle, the relative abilities of serovars to survive within the lymphatic system of cattle remain ill defined. A sequencing-based method which used available information from sequencedSalmonellagenomes to study the dynamics of mixed-serovar infectionsin vivowas developed. The main advantages of the method include the simultaneous identification and quantification of multiple strains without any genetic modification and minimal animal use. This approach could be used in vaccination trials or in epidemiological surveys where an understanding of the dynamics of closely related strains of a pathogen in mixed populations could inform the prediction of zoonotic risk and the development of intervention strategies.


2007 ◽  
Vol 104 (22) ◽  
pp. 9451-9456 ◽  
Author(s):  
M. M. Mwangi ◽  
S. W. Wu ◽  
Y. Zhou ◽  
K. Sieradzki ◽  
H. de Lencastre ◽  
...  

2021 ◽  
Author(s):  
Sai Narayanan ◽  
Girish Patil ◽  
Sunil More ◽  
Jeremiah Saliki ◽  
Anil Kaul ◽  
...  

AbstractWe describe the detection of SARS-CoV-2 (VOC)B.1.1.7 lineage in Oklahoma, USA. Various mutations in the S gene and ORF8 with similarity to the genome of B.1.1.7 lineage were detected in 4 of the 6 genomes sequenced and reported here. The sequences have been made available in GISAID. Presence of novel lineages indicate the need for frequent whole genome sequencing to better understand pathogen dynamics in different geographical locations.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2021 ◽  
Author(s):  
José Afonso Guerra-Assunção ◽  
Paul A. Randell ◽  
Florencia A. T. Boshier ◽  
Michael A. Crone ◽  
Juanita Pang ◽  
...  

AbstractThe appearance of the SARS-CoV-2 lineage B.1.1.7 in the UK in late 2020, associated with faster transmission, sparked the need to find effective ways to monitor its spread. The set of mutations that characterise this lineage include a deletion in position 69 and 70 of the spike protein, which is known to be associated with Spike Gene Target Failure (SGTF) in a commonly used three gene diagnostic qPCR assay. The lower cost and faster turnaround times compared to whole genome sequencing make the use of qPCR for monitoring of the variant spread an attractive proposition. However, there are several potential issues with this approach. Here we use 826 SARS-CoV-2 samples collected in a hospital setting as part of the Hospital Onset COVID Infection (HOCI) study where qPCR was used for viral detection, followed by whole genome sequencing (WGS), to identify the factors to consider when using SGTF to infer lineage B.1.1.7 prevalence in a hospital setting, with potential implications for locations where this variant has recently been introduced.


2021 ◽  
Author(s):  
Katsutoshi Nagano ◽  
Chihiro Tani-Sassa ◽  
Yumi Iwasaki ◽  
Yuna Takatsuki ◽  
Sonoka Yuasa ◽  
...  

Background: The spread of SARS-CoV-2 variants, such as B.1.1.7 and B.1.351, has become a crucial issue worldwide. Therefore, we began testing all patients with COVID-19 for the N501Y and E484K mutations associated with SARS-CoV-2. Study design: Nasopharyngeal swab samples from 108 patients who visited our hospital between February and April 2021 were analyzed. The samples were analyzed using reverse transcription-polymerase chain reaction with melting curve analysis to detect the N501Y and E484K mutations. A part of the samples were also subjected to whole genome sequencing. Clinical parameters such as mortality and admission to the intensive care unit were analyzed to examine the association between increased disease severity and the E484K mutation. Results: The ratio of cases showing the 501N+484K mutation rapidly increased from 8% in February to 46% in March. Whole genome sequencing revealed that the viruses with 501N+484K mutation are R.1 lineage variants. Evidence of increased disease severity related to the R.1 variants were not found. Conclusions: We found that the R.1 lineage variants rapidly prevailed in Tokyo in March 2021.


Sign in / Sign up

Export Citation Format

Share Document