scholarly journals First detection and report of SARS-CoV-2 Spike protein N501Y mutations in Oklahoma USA

Author(s):  
Sai Narayanan ◽  
Girish Patil ◽  
Sunil More ◽  
Jeremiah Saliki ◽  
Anil Kaul ◽  
...  

AbstractWe describe the detection of SARS-CoV-2 (VOC)B.1.1.7 lineage in Oklahoma, USA. Various mutations in the S gene and ORF8 with similarity to the genome of B.1.1.7 lineage were detected in 4 of the 6 genomes sequenced and reported here. The sequences have been made available in GISAID. Presence of novel lineages indicate the need for frequent whole genome sequencing to better understand pathogen dynamics in different geographical locations.

Author(s):  
Kelvin Kai-Wang To ◽  
Xin Li ◽  
David Christopher Lung ◽  
Jonathan Daniel Ip ◽  
Wan-Mui Chan ◽  
...  

Abstract A false-positive SARS-CoV-2 RT-PCR result can lead to unnecessary public-health measures. We report two individuals whose respiratory specimens were contaminated by inactivated SARS-CoV-2 vaccine strain(CoronaVac), likely at vaccination premises. Incidentally, whole-genome sequencing of CoronaVac showed adaptive deletions on the spike protein, which do not result in observable changes of antigenicity.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1803
Author(s):  
Jitendra Singh ◽  
Anvita Gupta Malhotra ◽  
Debasis Biswas ◽  
Prem Shankar ◽  
Leena Lokhande ◽  
...  

India experienced a tragic second wave after the end of March 2021, which was far more massive than the first wave and was driven by the emergence of the novel delta variant (B.1.617.2) of the SARS-CoV-2 virus. In this study, we explored the local and national landscape of the viral variants in the period immediately preceding the second wave to gain insight into the mechanism of emergence of the delta variant and thus improve our understanding of the causation of the second wave. We randomly selected 20 SARS-CoV-2 positive samples diagnosed in our lab between 3 February and 8 March 2021 and subjected them to whole genome sequencing. Nine of the 20 sequenced genomes were classified as kappa variant (B.1.617.1). The phylogenetic analysis of pan-India SARS-CoV-2 genome sequences also suggested the gradual replacement of the α variant with the kappa variant during this period. This relative consolidation of the kappa variant was significant, since it shared 3 of the 4 signature mutations (L452R, E484Q and P681R) observed in the spike protein of delta variant and thus was likely to be the precursor in its evolution. This study demonstrates the predominance of the kappa variant in the period immediately prior to the second wave and underscores its role as the “bridging variant” between the α and delta variants that drove the first and second waves of COVID-19 in India, respectively.


2021 ◽  
Author(s):  
José Afonso Guerra-Assunção ◽  
Paul A. Randell ◽  
Florencia A. T. Boshier ◽  
Michael A. Crone ◽  
Juanita Pang ◽  
...  

AbstractThe appearance of the SARS-CoV-2 lineage B.1.1.7 in the UK in late 2020, associated with faster transmission, sparked the need to find effective ways to monitor its spread. The set of mutations that characterise this lineage include a deletion in position 69 and 70 of the spike protein, which is known to be associated with Spike Gene Target Failure (SGTF) in a commonly used three gene diagnostic qPCR assay. The lower cost and faster turnaround times compared to whole genome sequencing make the use of qPCR for monitoring of the variant spread an attractive proposition. However, there are several potential issues with this approach. Here we use 826 SARS-CoV-2 samples collected in a hospital setting as part of the Hospital Onset COVID Infection (HOCI) study where qPCR was used for viral detection, followed by whole genome sequencing (WGS), to identify the factors to consider when using SGTF to infer lineage B.1.1.7 prevalence in a hospital setting, with potential implications for locations where this variant has recently been introduced.


2021 ◽  
Author(s):  
Camino Trobajo-Sanmartín ◽  
Ana Miqueleiz ◽  
María Eugenia Portillo ◽  
Miguel Fernández-Huerta ◽  
Ana Navascués ◽  
...  

With the emergence of new SARS-CoV-2 variants and the acquisition of novel mutations in exiting lineages, the need to implement methods capable of monitoring viral dynamics arises. We report the emergence and spread of a new SARS-CoV-2 variant within B.1.575 lineage containing the E484K mutation in the spike protein (named B.1.575.2) in a region of Northern Spain between May and June 2021. SARS-CoV-2 positive samples with cycle threshold value less than or equal to 30 were selected to screen of presumptive variants using the TaqPathTM COVID-19 RT-PCR kit and TaqManTM SARS-CoV-2 Mutation Panel. Confirmation of variants was performed by whole genome sequencing. Of the 200 samples belonging to the B.1.575 lineage, 194 (97%) corresponded to the B.1.575.2 sub-lineage, which was related to the presence of the E484K mutation. Of 197 cases registered in GISAID EpiCoV database as lineage B.1.575.2 194 (99.5%) were identified in Pamplona (Spain). This report emphasizes the importance of complementing surveillance of SARS-CoV-2 with sequencing for the rapid control of emerging viral variants.


2021 ◽  
Author(s):  
Yosuke Hirotsu ◽  
Masao Omata

We aimed to investigate SARS-CoV-2 emerging lineage harboring variants in receptor binding domain (RBD) of spike protein in Japan. Total nucleic acids were subjected to whole genome sequencing on samples from 133 patients with coronavirus disease (COVID-19). We obtained the SARS-CoV-2 genome sequence from these patients and examined variants in RBD. As a result, three patients were infected with SARS-CoV-2 harboring E484K mutation in January 2021. These three patients were relatives; one was in the 40s, and two were younger than 10 years old. They had no history of staying abroad and were living in Japan. This strains were classified into GR clade (GISAID), 20B clade (Nextstrain) and R.1 lineage (PANGO). As of March 5, 2021, the R.1 lineage have been identified in 305 samples and dominantly observed in the USA (44%, 135 / 305) and Japan (28%, 84 / 305) from the GISAID database. During the period between October 26, 2020 and February 23, 2021, the frequency of the R.1 lineage was 0.97% (84 / 8,629) of the total confirmed data in Japan and 0.15% (135 / 90,450) in the USA. Although SARS-CoV-2 R.1 lineage was not globally predominant as of March 2021, further analysis is needed to determine whether R.1 variant will disappear or expand in the future.


2021 ◽  
Author(s):  
Wasfi Fares ◽  
Kais Ghedira ◽  
Mariem Gdoura ◽  
Anissa Chouikha ◽  
Sondos Haddad-Boubaker ◽  
...  

Recent efforts have reported numerous variants that influence SARS-CoV-2 viral characteristics including pathogenicity, transmission rate and ability of detection by molecular tests. Whole genome sequencing based on NGS technologies is the method of choice to identify all viral variants; however, the resources needed to use these techniques for a representative number of specimens remain limited in many low and middle income countries. To decrease sequencing cost, we developed a couple of primers allowing to generate partial sequences in the viral S gene allowing rapid detection of numerous variants of concern (VOCs) and variants of interest (VOIs); whole genome sequencing is then performed on a selection of viruses based on partial sequencing results. Two hundred and one nasopharyngeal specimens collected during the decreasing phase of a high transmission COVID-19 wave in Tunisia were analyzed. The results reveal high genetic variability within the sequenced fragment and allowed the detection of first introduction in the country of already known VOCs and VOIs as well as others variants that have interesting genomic mutations and need to be kept under surveillance.


2021 ◽  
Author(s):  
Inas M Alhudiri ◽  
Ahmad M Ramadan ◽  
Khaled Ibrahim Ibrahim ◽  
Mouna Eljilani ◽  
Adel Abdalla Aboud ◽  
...  

A cluster-5 variant was detected in September 2020 in minks and humans in Denmark and currently classified as Alpha or B.1.1.7 strain. This variant presents several mutations in the spike region (S) which could increase the transmissibility of the virus 43-90% over previously circulating variants. The national center for disease control (NCDC) announced on 24th February 2021 the discovery of B.1.1.7 strain in Libya using a reverse-transcriptase PCR assay for S-gene target failure (SGTF) and reported that 25% of the tested samples were UK variant. This assay relies on the specific identification of the H69-V70 deletion in S gene which causes S gene drop out in RT-PCR; characteristic of the UK variant (B.1.1.7). This letter discusses our whole genome sequencing results of positive SARS-COV-2 samples with SGTF collected between 25th February - 4th March 2021 in Libya.


2021 ◽  
Author(s):  
Pallavali Roja Rani ◽  
Mohamed Imran ◽  
Juturu Vijaya Lakshmi ◽  
Bani Jolly ◽  
Abhinav Jain ◽  
...  

Here we describe a case of re-infection in an individual from South India characterized by whole genome sequencing of the virus isolated from both episodes. The analysis shows the presence of an immune escape variant N440K in the Spike protein in both episodes of infection. Incidentally, this variant was also found in a case of reinfection previously reported by us in a healthcare worker from North India


Author(s):  
Hannah Wang ◽  
Jacob A. Miller ◽  
Michelle Verghese ◽  
Mamdouh Sibai ◽  
Daniel Solis ◽  
...  

Emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with concerning phenotypic mutations is of public health interest. Genomic surveillance is an important tool for pandemic response, but many laboratories do not have the resources to support population-level sequencing. We hypothesized that a nucleic acid amplification test (NAAT) to genotype mutations in the viral spike protein could facilitate high-throughput variant surveillance. We designed and analytically validated a one-step multiplex allele-specific reverse transcriptase polymerase chain reaction (RT-qPCR) to detect three non-synonymous spike protein mutations (L452R, E484K, N501Y). Assay specificity was validated with next-generation whole-genome sequencing. We then screened a large cohort of SARS-CoV-2 positive specimens from our San Francisco Bay Area population. Between December 1, 2020 and March 1, 2021, we screened 4,049 unique infections by genotyping RT-qPCR, with an assay failure rate of 2.8%. We detected 1,567 L452R mutations (38.7%), 34 N501Y mutations (0.84%), 22 E484K mutations (0.54%), and 3 (0.07%) E484K+N501Y mutations. The assay had perfect (100%) concordance with whole-genome sequencing in a validation subset of 229 specimens, and detected B.1.1.7, B.1.351, B.1.427, B.1.429, B.1.526, and P.2 variants, among others. The assay revealed rapid emergence of L452R in our population, with a prevalence of 24.8% in December 2020 that increased to 62.5% in March 2021. We developed and clinically implemented a genotyping RT-qPCR to conduct high-throughput SARS-CoV-2 variant screening. This approach can be adapted for emerging mutations and immediately implemented in laboratories already performing NAAT worldwide using existing equipment, personnel, and extracted nucleic acid.


2021 ◽  
Author(s):  
Vidhya N M ◽  
Kumaresan A ◽  
Kalaivani V ◽  
Rajesh Kumar A ◽  
Gurunathan Subramanian ◽  
...  

Emergence of Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) Variants of Concern (VOC) possessing improved virulence, transmissibility and/or immune-escape capabilities has raised significant public health concerns. In order to identify VOCs, WHO recommends Whole-Genome Sequencing approach, which is costly and involves longer completion time. Hence, potential role of commercial multiplex RT-PCR kit to screen variants rapidly is being attempted in this study. A total of 1200 suspected COVID samples from different districts of Tamil Nadu State (India) were screened with Thermo TaqPath RT-PCR kit and Altona Realstar RT-PCR Assay kit. Among 1200 screened, S-gene target failure (SGTF) phenomenon were identified in 112 samples while testing with TaqPath RT-PCR Kit. 100% concordant results were observed between SGTF phenomenon and whole-genome sequencing (WGS) results in detecting SARS-CoV-2 VOC B.1.1.7. TaqPath RT-PCR assay testing can be utilized by laboratories to screen rapidly the VOC B.1.1.7 variants, thus enabling early detection of B.1.1.7 variant infection and transmission in population. This in turn will pave way to implement suitable preventive measures by appropriate authorities to control the transmission of the viral variant.


Sign in / Sign up

Export Citation Format

Share Document