scholarly journals αB-crystallin affects the morphology of Aβ(1-40) aggregates

2021 ◽  
Author(s):  
Henrik Müller ◽  
David M. Dias ◽  
Anna van der Zalm ◽  
Andrew J. Baldwin

SummaryαB-crystallin (ABC) is a human small heat shock protein that is strongly linked to Alzheimer’s disease (AD). In vitro, it can inhibit the aggregation and amyloid formation of a range of proteins including Aβ(1-40), a primary component of AD amyloid plaques. Despite the strong links, the mechanism by which ABC inhibits amyloid formation has remained elusive, in part due to the notorious irreproducibility of aggregation assays involving preparations of Aβ-peptides of native sequence. Here, we present a recombinant expression protocol to produce native Aβ(1-40), devoid of any modifications or exogenous residues, with yields up to 4 mg/L E. coli. This material provides highly reproducible aggregation kinetics and, by varying the solution conditions, we obtain either highly ordered amyloid fibrils or more disordered aggregates. Addition of ABC slows the aggregation of Aβ(1-40), and interferes specifically with the formation of ordered amyloid fibrils, favouring instead the more disordered aggregates. Solution-state NMR spectroscopy reveals that the interaction of ABC with Aβ(1-40) depends on the specific aggregate morphology. These results provide mechanistic insight into how ABC inhibits the formation of amyloid fibrils.HighlightsProtocol for production of native recombinant Aβ(1-40)Amyloid formation under physiological conditions is highly reproducibleBoth ordered fibrils and disordered aggregates can be reliably formedαB-crystallin specifically inhibits amyloid fibril assembling, favouring disordered aggregateseTOC blurbMüller et al. introduce a protocol for the highly reproducible production of amyloid from native Aβ(1-40) and determine that the human chaperone ABC specifically destabilises them in favour of disordered aggregates. NMR shows that ABC can distinguish between aggregate morphologies.Graphical Abstract

2021 ◽  
Author(s):  
E. Stroo ◽  
L. Janssen ◽  
O. Sin ◽  
W. Hogewerf ◽  
M. Koster ◽  
...  

AbstractNeurodegenerative diseases like Alzheimer, Parkinson and Huntington disease are characterized by aggregation-prone proteins that form amyloid fibrils through a nucleation process. Despite the shared β-sheet structure, recent research has shown that structurally different polymorphs exist within fibrils of the same protein. These polymorphs are associated with varying levels of toxicity and different disease phenotypes. MOAG-4 and its human orthologs SERF1 and SERF2 have previously been shown to modify the nucleation and drive amyloid formation and protein toxicity in vitro and in C. elegans. To further explore these findings, we generated a Serf2 knockout (KO) mouse model and crossed it with the APPPS1 mouse model for Aβ amyloid pathology. Full-body KO of Serf2 resulted in a developmental delay and perinatal lethality due to insufficient lung maturation. Therefore, we proceeded with a brain-specific Serf2 KO, which was found to be viable. We examined the Aβ pathology at 1 and 3 months of age, which is before and after the start of amyloid deposition. We show that SERF2 deficiency does not affect the production and overall Aβ levels. Serf2 KO-APPPS1 mice displayed an increased intracellular Aβ accumulation at 1 month and a higher number of Aβ deposits compared to APPPS1 mice with similar Aβ levels. Moreover, conformation-specific dyes and electron microscopy revealed a difference in the structure and amyloid content of these Aβ deposits. Together, our results reveal that SERF2 causes a structural shift in Aβ aggregation in a mammalian brain. These findings indicate that a single endogenous factor may contribute to amyloid polymorphisms, allowing for new insights into this phenomenon’s contribution to disease manifestation.HighlightsLoss of SERF2 slows embryonic development and causes perinatal lethalitySERF2 affects proliferation in a cell-autonomous fashionBrain-specific Serf2 knockout does not affect viability or Aβ productionBrain deletion of Serf2 shifts the amyloid conformation of Aβ


2018 ◽  
Author(s):  
Olga Tkachenko ◽  
Justin L.P. Benesch ◽  
Andrew J. Baldwin

AbstractAmyloid formation is implicated in a range of neurodegenerative conditions including Alzheimer’s and Parkinson’s diseases. The small heat-shock protein αB-crystallin (αBC) is associated with both, and directly inhibits amyloid formation in vitro and its toxicity in cells. Studying the mechanism of aggregation inhibition is challenging owing to sample heterogeneity and the dynamic nature of the process. Here, by means of NMR spectroscopy and chemical kinetics, we establish the mechanism by which the protein α-lactalbumin aggregates and forms amyloid, and how this is inhibited by αBC. In particular, we characterise the lifetime of the unstable aggregation nucleus, and determine that this species is specifically destabilised by αBC. This mechanism allows the chaperone to delay the onset of aggregation, although it is overwhelmed on longer timescales. The methodology we present provides a mechanistic understanding of how αBC reduces the toxicity of amyloids, and is widely applicable to other complex mixtures.


2019 ◽  
Vol 116 (34) ◽  
pp. 16835-16840 ◽  
Author(s):  
Niraja Kedia ◽  
Khalid Arhzaouy ◽  
Sara K. Pittman ◽  
Yuanzi Sun ◽  
Mark Batchelor ◽  
...  

Desmin-associated myofibrillar myopathy (MFM) has pathologic similarities to neurodegeneration-associated protein aggregate diseases. Desmin is an abundant muscle-specific intermediate filament, and disease mutations lead to its aggregation in cells, animals, and patients. We reasoned that similar to neurodegeneration-associated proteins, desmin itself may form amyloid. Desmin peptides corresponding to putative amyloidogenic regions formed seeding-competent amyloid fibrils. Amyloid formation was increased when disease-associated mutations were made within the peptide, and this conversion was inhibited by the anti-amyloid compound epigallocatechin-gallate. Moreover, a purified desmin fragment (aa 117 to 348) containing both amyloidogenic regions formed amyloid fibrils under physiologic conditions. Desmin fragment-derived amyloid coaggregated with full-length desmin and was able to template its conversion into fibrils in vitro. Desmin amyloids were cytotoxic to myotubes and disrupted their myofibril organization compared with desmin monomer or other nondesmin amyloids. Finally, desmin fragment amyloid persisted when introduced into mouse skeletal muscle. These data suggest that desmin forms seeding-competent amyloid that is toxic to myofibers. Moreover, small molecules known to interfere with amyloid formation and propagation may have therapeutic potential in MFM.


1998 ◽  
Vol 140 (5) ◽  
pp. 1113-1124 ◽  
Author(s):  
Atsushi Suzuki ◽  
Yuki Sugiyama ◽  
Yukiko Hayashi ◽  
Nobuo Nyu-i ◽  
Michihiko Yoshida ◽  
...  

Muscle cells are frequently subjected to severe conditions caused by heat, oxidative, and mechanical stresses. The small heat shock proteins (sHSPs) such as αB-crystallin and HSP27, which are highly expressed in muscle cells, have been suggested to play roles in maintaining myofibrillar integrity against such stresses. Here, we identified a novel member of the sHSP family that associates specifically with myotonic dystrophy protein kinase (DMPK). This DMPK-binding protein, MKBP, shows a unique nature compared with other known sHSPs: (a) In muscle cytosol, MKBP exists as an oligomeric complex separate from the complex formed by αB-crystallin and HSP27. (b) The expression of MKBP is not induced by heat shock, although it shows the characteristic early response of redistribution to the insoluble fraction like other sHSPs. Immunohistochemical analysis of skeletal muscle cells shows that MKBP localizes to the cross sections of individual myofibrils at the Z-membrane as well as the neuromuscular junction, where DMPK has been suggested to be concentrated. In vitro, MKBP enhances the kinase activity of DMPK and protects it from heat-induced inactivation. These results suggest that MKBP constitutes a novel stress-responsive system independent of other known sHSPs in muscle cells and that DMPK may be involved in this system by being activated by MKBP. Importantly, since the amount of MKBP protein, but not that of other sHSP family member proteins, is selectively upregulated in skeletal muscle from DM patients, an interaction between DMPK and MKBP may be involved in the pathogenesis of DM.


2020 ◽  
Vol 295 (33) ◽  
pp. 11379-11387 ◽  
Author(s):  
Sara Raimondi ◽  
P. Patrizia Mangione ◽  
Guglielmo Verona ◽  
Diana Canetti ◽  
Paola Nocerino ◽  
...  

Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro either using the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were −12.36, −8.10, and −10.61 kcal mol−1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods of structural comparison between ex vivo fibrils and fibrils generated in vitro. Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology.


2000 ◽  
Vol 348 (1) ◽  
pp. 167-172 ◽  
Author(s):  
Clara REDONDO ◽  
Ana M. DAMAS ◽  
Maria João M. SARAIVA

The molecular mechanisms that convert soluble transthyretin (TTR) tetramers into insoluble amyloid fibrils are still unknown; dissociation of the TTR tetramer is a pre-requisite for amyloid formation in vitro and involvement of monomers and/or dimers in fibril formation has been suggested by structural studies. We have designed four mutated proteins with the purpose of stabilizing [Ser117 → Cys (S117C) and Glu92 → Cys (E92C)] or destabilizing [Asp18 → Asn (D18N) and Leu110 → Ala (D110A)] the dimer/tetramer interactions in TTR, aiming at elucidating structural determinants in amyloidogenesis. The resistance of the mutated proteins to dissociation was analysed by HPLC studies of diluted TTR preparations. Both ‘stabilized’ mutants migrated as tetramers and, upon dilution, no other TTR species was observed, confirming the increased resistance to dissociation. For the ‘destabilized’ mutants, a mixture of tetrameric and monomeric forms co-existed at low dilution and the latter increased upon 10-fold dilution. Both of the destabilizing mutants formed amyloid in vitro when acidified. This result indicated that both the AB loop of TTR, destabilized in D18N, and the hydrophobic interactions affecting the dimer-dimer interfaces in L110A are implicated in the stability of the tetrameric structure. The stabilized mutants, which were dimeric in nature through disulphide bonding, were unable to polymerize into amyloid, even at pH 3.2. When the amyloid formation assay was repeated in the presence of 2-mercaptoethanol, upon disruption of the S-S bridges of these stable dimers, amyloid fibril formation was observed. This experimental evidence suggests that monomers, rather than dimers, are the repeating structural subunit comprising the amyloid fibrils.


2017 ◽  
Vol 114 (9) ◽  
pp. E1745-E1754 ◽  
Author(s):  
Hedwich F. Kuipers ◽  
Jane Yoon ◽  
Jack van Horssen ◽  
May H. Han ◽  
Paul L. Bollyky ◽  
...  

The small heat shock protein αB-crystallin (CRYAB) has been implicated in multiple sclerosis (MS) pathogenesis. Earlier studies have indicated that CRYAB inhibits inflammation and attenuates clinical disease when administered in the experimental autoimmune encephalomyelitis model of MS. In this study, we evaluated the role of CRYAB in primary demyelinating events. Using the cuprizone model of demyelination, a noninflammatory model that allows the analysis of glial responses in MS, we show that endogenous CRYAB expression is associated with increased severity of demyelination. Moreover, we demonstrate a strong correlation between the expression of CRYAB and the extent of reactive astrogliosis in demyelinating areas and in in vitro assays. In addition, we reveal that CRYAB is differentially phosphorylated in astrocytes in active demyelinating MS lesions, as well as in cuprizone-induced lesions, and that this phosphorylation is required for the reactive astrocyte response associated with demyelination. Furthermore, taking a proteomics approach to identify proteins that are bound by the phosphorylated forms of CRYAB in primary cultured astrocytes, we show that there is clear differential binding of protein targets due to the specific phosphorylation of CRYAB. Subsequent Ingenuity Pathway Analysis of these targets reveals implications for intracellular pathways and biological processes that could be affected by these modifications. Together, these findings demonstrate that astrocytes play a pivotal role in demyelination, making them a potential target for therapeutic intervention, and that phosphorylation of CRYAB is a key factor supporting the pathogenic response of astrocytes to oligodendrocyte injury.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3571
Author(s):  
Gareth J. Morgan

Inhibition of amyloid fibril formation could benefit patients with systemic amyloidosis. In this group of diseases, deposition of amyloid fibrils derived from normally soluble proteins leads to progressive tissue damage and organ failure. Amyloid formation is a complex process, where several individual steps could be targeted. Several small molecules have been proposed as inhibitors of amyloid formation. However, the exact mechanism of action for a molecule is often not known, which impedes medicinal chemistry efforts to develop more potent molecules. Furthermore, commonly used assays are prone to artifacts that must be controlled for. Here, potential mechanisms by which small molecules could inhibit aggregation of immunoglobulin light-chain dimers, the precursor proteins for amyloid light-chain (AL) amyloidosis, are studied in assays that recapitulate different aspects of amyloidogenesis in vitro. One molecule reduced unfolding-coupled proteolysis of light chains, but no molecules inhibited aggregation of light chains or disrupted pre-formed amyloid fibrils. This work demonstrates the challenges associated with drug development for amyloidosis, but also highlights the potential to combine therapies that target different aspects of amyloidosis.


2019 ◽  
Vol 16 (3) ◽  
pp. 155-163
Author(s):  
Uthaiwan SUTTISANSANEE ◽  
Kalyarat KRUAWAN

Alzhiemer’s disease (AD) is common amongst the elderly and is associated with decline in brain functions in terms of memory and cognitive loss. The causes of the disease may occur through loss of presynaptic markers of cholinergic system and deposition of amyloid fibrils in the brain. Cholinesterases (ChEs) including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are the key enzymes controlling degradation of neurotransmitters, acetylcholines (AChs), in cholinergic hypothesis. Whereas overproduction of b-secretase (BACE1) can generate insoluble b-amyloid peptides. Thus, retardation on enzyme reactions can lead to potential AD prevention. The aim of this research was to investigate in vitro anti-AD activity through key enzymes inhibitions from Thai local plants with edible sour leaves, including Garcinia cowa Roxb., Spondias pinnata (Linn.f.) Kurz, Syzygium gratum (Wight) S.N. Mitra., Tamarind indica L. and Cratoxylum formosum (Jack) Dyer. Leaves were extracted in organic solvents with different polarity index values (ethanol and hexane). As results, all plants possessed different degrees of anti-ChEs activity, in which ethanolic extracts of Spondias pinnata and Tamarind indica exhibited significantly higher ChEs inhibitory activities than Syzygium gratum, Garcinia cowa and Cratoxylum formosum, respectively. Interestingly, most hexane extracts exhibited higher anti-AChE activities than ethanol extracts, while the contrary results were observed in anti-BChE activity. Besides, only Cratoxylum formosum, Garcinia cowa and Tamarind indica extracts possessed anti-BACE1 activity. The information received from this study would be great support of future drug development or nutraceutical agents against AD occurrence regarding its cholinergic and b-amyloid formation hypotheses.


2020 ◽  
Vol 117 (45) ◽  
pp. 27997-28004
Author(s):  
Tony E. R. Werner ◽  
David Bernson ◽  
Elin K. Esbjörner ◽  
Sandra Rocha ◽  
Pernilla Wittung-Stafshede

Amyloid formation involves the conversion of soluble protein species to an aggregated state. Amyloid fibrils of β-parvalbumin, a protein abundant in fish, act as an allergen but also inhibit the in vitro assembly of the Parkinson protein α-synuclein. However, the intrinsic aggregation mechanism of β-parvalbumin has not yet been elucidated. We performed biophysical experiments in combination with mathematical modeling of aggregation kinetics and discovered that the aggregation of β-parvalbumin is initiated by the formation of dimers stabilized by disulfide bonds and then proceeds via primary nucleation and fibril elongation processes. Dimer formation is accelerated by H2O2and hindered by reducing agents, resulting in faster and slower aggregation rates, respectively. Purified β-parvalbumin dimers readily assemble into amyloid fibrils with similar morphology as those formed when starting from monomer solutions. Furthermore, addition of preformed dimers accelerates the aggregation reaction of monomers. Aggregation of purified β-parvalbumin dimers follows the same kinetic mechanism as that of monomers, implying that the rate-limiting primary nucleus is larger than a dimer and/or involves structural conversion. Our findings demonstrate a folded protein system in which spontaneously formed intermolecular disulfide bonds initiate amyloid fibril formation by recruitment of monomers. This dimer-induced aggregation mechanism may be of relevance for human amyloid diseases in which oxidative stress is often an associated hallmark.


Sign in / Sign up

Export Citation Format

Share Document