scholarly journals Legionella pneumophila CRISPR-Cas suggests recurrent encounters with Gokushovirinae

2021 ◽  
Author(s):  
Shayna R. Deecker ◽  
Malene L. Urbanus ◽  
Beth Nicholson ◽  
Alexander W. Ensminger

ABSTRACTLegionella pneumophila is a ubiquitous freshwater pathogen and the causative agent of Legionnaires’ disease. This pathogen and its ability to cause disease is closely tied to its environmental encounters. From phagocytic protists, L. pneumophila has “learned” how to avoid predation and exploit conserved eukaryotic processes to establish an intracellular replicative niche. Legionnaires’ disease is a product of these evolutionary pressures as L. pneumophila uses the same molecular mechanisms to replicate in grazing protists and in macrophages of the human lung. L. pneumophila growth within protists also provides a refuge from desiccation, disinfection, and other remediation strategies. One outstanding question has been whether this protection extends to phages. L. pneumophila isolates are remarkably devoid of prophages and to date no Legionella phages have been identified. Nevertheless, many L. pneumophila isolates maintain active CRISPR-Cas defenses. So far, the only known target of these systems has been an episomal element that we previously named Legionella Mobile Element-1 (LME-1). In this study, we have identified over 150 CRISPR-Cas systems across 600 isolates, to establish the clearest picture yet of L. pneumophila’s adaptive defenses. By leveraging the sequence of 1,500 unique spacers, we can make two main conclusions: current data argue against CRISPR-Cas targeted integrative elements beyond LME-1 and the heretofore “missing” L. pneumophila phages are most likely lytic gokushoviruses.IMPORTANCEThe causative agent of Legionnaires’ disease, an often-fatal pneumonia, is an intracellular bacterium, Legionella pneumophila, that normally grows inside amoebae and other freshwater protists. Unfortunately for us, this has two major consequences: the bacterium can take what it has learned in amoebae and use similar strategies to grow inside our lungs; and these amoebae can protect Legionella from various forms of chemical and physical disinfection regimes. Legionella are ubiquitous in the environment and frequently found in man-made water systems. Understanding the challenges to Legionella survival before it reaches the human lung is critical to preventing disease.We have leveraged our earlier discovery that L. pneumophila CRISPR-Cas systems are active and adaptive – meaning that they respond to contemporary threats encountered in the environment. In this way, CRISPR arrays can be considered genomic diaries of past encounters, with spacer sequences used to identify elements that may impinge on the pathogen’s survival. One outstanding question in the field is whether L. pneumophila is susceptible to phage, given the presumptive protection provided by intracellular replication within its eukaryotic hosts. In this work, we use CRISPR spacer sequences to suggest that the heretofore “missing” L. pneumophila phage are most likely lytic gokushoviruses. Such information is critical to the long-term goal of developing of new strategies for preventing colonization of our water systems by Legionella and subsequent human exposure to the pathogen.

Author(s):  
Shayna R. Deecker ◽  
Malene L. Urbanus ◽  
Beth Nicholson ◽  
Alexander W. Ensminger

Legionella pneumophila is a ubiquitous freshwater pathogen and the causative agent of Legionnaires’ disease. L. pneumophila growth within protists provides a refuge from desiccation, disinfection, and other remediation strategies. One outstanding question has been whether this protection extends to phages. L. pneumophila isolates are remarkably devoid of prophages and to date no Legionella phages have been identified. Nevertheless, many L. pneumophila isolates maintain active CRISPR-Cas defenses. So far, the only known target of these systems is an episomal element that we previously named Legionella Mobile Element-1 (LME-1). The continued expansion of publicly available genomic data promises to further our understanding of the role of these systems. We now describe over 150 CRISPR-Cas systems across 600 isolates to establish the clearest picture yet of L. pneumophila ’s adaptive defenses. By searching for targets of 1,500 unique CRISPR-Cas spacers, LME-1 remains the only identified CRISPR-Cas targeted integrative element. We identified 3 additional LME-1 variants - all targeted by previously and newly identified CRISPR-Cas spacers - but no other similar elements. Notably, we also identified several spacers with significant sequence similarity to microviruses, specifically those within the subfamily Gokushovirinae . These spacers are found across several different CRISPR-Cas arrays isolated from geographically diverse isolates, indicating recurrent encounters with these phages. Our analysis of the extended Legionella CRISPR-Cas spacer catalog leads to two main conclusions: current data argue against CRISPR-Cas targeted integrative elements beyond LME-1, and the heretofore unknown L. pneumophila phages are most likely lytic gokushoviruses. IMPORTANCE Legionnaires’ disease is an often-fatal pneumonia caused by Legionella pneumophila , which normally grows inside amoebae and other freshwater protists. L. pneumophila trades diminished access to nutrients for the protection and isolation provided by the host. One outstanding question is whether L. pneumophila is susceptible to phages, given the protection provided by its intracellular lifestyle. In this work, we use Legionella CRISPR spacer sequences as a record of phage infection to predict that the “missing” L. pneumophila phages belong to the microvirus subfamily Gokushovirinae . Gokushoviruses are known to infect another intracellular pathogen, Chlamydia . How do gokushoviruses access L. pneumophila (and Chlamydia ) inside their “cozy niches”? Does exposure to phages happen during a transient extracellular period (during cell-to-cell spread) or is it indicative of a more complicated environmental lifestyle? One thing is clear, 100 years after their discovery, phages continue to hold important secrets about the bacteria upon which they prey.


2013 ◽  
Vol 82 (1) ◽  
pp. 275-285 ◽  
Author(s):  
Jens Jäger ◽  
Sebastian Marwitz ◽  
Jana Tiefenau ◽  
Janine Rasch ◽  
Olga Shevchuk ◽  
...  

ABSTRACTHistological and clinical investigations describe late stages of Legionnaires' disease but cannot characterize early events of human infection. Cellular or rodent infection models lack the complexity of tissue or have nonhuman backgrounds. Therefore, we developed and applied a novel model forLegionella pneumophilainfection comprising living human lung tissue. We stimulated lung explants withL. pneumophilastrains and outer membrane vesicles (OMVs) to analyze tissue damage, bacterial replication, and localization as well as the transcriptional response of infected tissue. Interestingly, we found that extracellular adhesion ofL. pneumophilato the entire alveolar lining precedes bacterial invasion and replication in recruited macrophages. In contrast, OMVs predominantly bound to alveolar macrophages. Specific damage to septa and epithelia increased over 48 h and was stronger in wild-type-infected and OMV-treated samples than in samples infected with the replication-deficient, type IVB secretion-deficient DotA−strain. Transcriptome analysis of lung tissue explants revealed a differential regulation of 2,499 genes after infection. The transcriptional response included the upregulation of uteroglobin and the downregulation of the macrophage receptor with collagenous structure (MARCO). Immunohistochemistry confirmed the downregulation of MARCO at sites of pathogen-induced tissue destruction. Neither host factor has ever been described in the context ofL. pneumophilainfections. This work demonstrates that the tissue explant model reproduces realistic features of Legionnaires' disease and reveals new functions for bacterial OMVs during infection. Our model allows us to characterize early steps of human infection which otherwise are not feasible for investigations.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Clémence Loiseau ◽  
Emilie Portier ◽  
Marie-Hélène Corre ◽  
Margot Schlusselhuber ◽  
Ségolène Depayras ◽  
...  

Legionella pneumophila, the causative agent of Legionnaires’ disease, is a waterborne bacterium mainly found in man-made water systems in close association with free-living amoebae and multispecies biofilms. Pseudomonas strains, originating from various environments including freshwater systems or isolated from hospitalized patients, were tested for their antagonistic activity towards L. pneumophila. A high amount of tested strains was thus found to be active. This antibacterial activity was correlated to the presence of tensioactive agents in culture supernatants. As Pseudomonas strains were known to produce biosurfactants, these compounds were specifically extracted and purified from active strains and further characterized using reverse-phase HPLC and mass spectrometry methods. Finally, all biosurfactants tested (lipopeptides and rhamnolipids) were found active and this activity was shown to be higher towards Legionella strains compared to various other bacteria. Therefore, described biosurfactants are potent anti-Legionella agents that could be used in the water treatment industry although tests are needed to evaluate how effective they would be under field conditions.


Author(s):  
Ashley Heida ◽  
Alexis Mraz ◽  
Mark Hamilton ◽  
Mark Weir ◽  
Kerry A Hamilton

Legionella pneumophila are bacteria that when inhaled cause Legionnaires’ Disease (LD) and febrile illness Pontiac Fever. As of 2014, LD is the most frequent cause of waterborne disease outbreaks due...


2019 ◽  
Vol 220 (10) ◽  
pp. 1700-1710
Author(s):  
Lanette M Christensen ◽  
Preeti Sule ◽  
Suat L G Cirillo ◽  
Madison Strain ◽  
Quinci Plumlee ◽  
...  

AbstractBackgroundLegionella can cause Legionnaires’ disease, a potentially fatal form of pneumonia that occurs as sporadic epidemics. Not all strains display the same propensity to cause disease in humans. Because Legionella pneumophila serogroup 1 is responsible for >85% of infections, the majority of studies have examined this serogroup, but there are 3 commonly used laboratory strains: L pneumophila serogroup 1 Philadelphia (Phil-1)-derived strains JR32 and Lp01 and 130b-derived strain AA100.MethodsWe evaluated the ability of Phil-1, JR32, Lp01, and AA100 to cause disease in guinea pigs.ResultsWe found that, although Phil-1, JR32, and AA100 cause an acute pneumonia and death by 4 days postinfection (100%), strain Lp01 does not cause mortality (0%). We also noted that Lp01 lacks a mobile element, designated p45, whose presence correlates with virulence. Transfer of p45 into Lp01 results in recovery of the ability of this strain to cause mortality, leads to more pronounced disease, and correlates with increased interferon-γ levels in the lungs and spleens before death.ConclusionsThese observations suggest a mechanism of Legionnaires’ disease pathogenesis due to the presence of type IVA secretion systems that cause higher mortality due to overinduction of a proinflammatory response in the host.


2020 ◽  
pp. 1226-1229
Author(s):  
Diego Viasus ◽  
Jordi Carratalà

Legionellaceae are Gram-negative bacilli, of which Legionella pneumophila is the principal cause of human infections. Their natural habitats are freshwater streams, lakes, thermal springs, moist soil, and mud, but the principal source for large outbreaks of legionellosis is cooling systems used for air conditioning and other cooling equipment. Legionella spp. are principally transmitted to humans through contaminated water aerosols. Middle-aged men, smokers, regular alcohol drinkers, and those with comorbidity are most at risk. Aside from supportive care, the first-choice antibiotics are macrolides (mainly azithromycin) and/or fluoroquinolones (especially levofloxacin). Case fatality is 5–15% in previously well adults, but much higher in those who are immunocompromised or develop respiratory failure. Prognosis is improved by early administration of effective anti-legionella antibiotic therapy. Prevention is by the correct design, maintenance, and monitoring of water systems.


2005 ◽  
Vol 71 (10) ◽  
pp. 5805-5813 ◽  
Author(s):  
Paola Borella ◽  
Maria Teresa Montagna ◽  
Serena Stampi ◽  
Giovanna Stancanelli ◽  
Vincenzo Romano-Spica ◽  
...  

ABSTRACT A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of ≥103 CFU liter−1, and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed.


2012 ◽  
Vol 78 (15) ◽  
pp. 5457-5459 ◽  
Author(s):  
Molly C. Sutherland ◽  
Joseph P. Vogel

ABSTRACTResearch onLegionella pneumophila, the causative agent of Legionnaires' disease, has been hampered due to the lack of selectable markers for genetic manipulation. We report the construction of a mutant strain ofL. pneumophilalackingloxA, a chromosomally encoded β-lactamase, that has enhanced sensitivity to ampicillin. Also described are a method for convertingLegionellastrains to ampicillin sensitivity and conditions for utilizingblaas a selectable marker.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 417
Author(s):  
Ashraf R. Zayed ◽  
Marina Pecellin ◽  
Lina Jaber ◽  
Suha Butmeh ◽  
Shereen A. Bahader ◽  
...  

Legionella pneumophila is the causative agent of Legionnaires’ disease. Due to the hot climate and intermittent water supply, the West Bank, Palestine, can be considered a high-risk area for this often fatal atypical pneumonia. L. pneumophila occurs in biofilms of natural and man-made freshwater environments, where it infects and replicates intracellularly within protozoa. To correlate the genetic diversity of the bacteria in the environment with their virulence properties for protozoan and mammalian host cells, 60 genotyped isolates from hospital water systems in the West Bank were analyzed. The L. pneumophila isolates were previously genotyped by high resolution Multi Locus Variable Number of Tandem Repeat Analysis (MLVA-8(12)) and sorted according to their relationship in clonal complexes (VACC). Strains of relevant genotypes and VACCs were compared according to their capacity to infect Acanthamoeba castellanii and THP-1 macrophages, and to mediate pore-forming cytotoxicity in sheep red blood cells (sRBCs). Based on a previous detailed analysis of the biogeographic distribution and abundance of the MLVA-8(12)-genotypes, the focus of the study was on the most abundant L. pneumophila- genotypes Gt4(17), Gt6 (18) and Gt10(93) and the four relevant clonal complexes [VACC1, VACC2, VACC5 and VACC11]. The highly abundant genotypes Gt4(17) and Gt6(18) are affiliated with VACC1 and sequence type (ST)1 (comprising L. pneumophila str. Paris), and displayed seroroup (Sg)1. Isolates of these two genotypes exhibited significantly higher virulence potentials compared to other genotypes and clonal complexes in the West Bank. Endemic for the West Bank was the clonal complex VACC11 (affiliated with ST461) represented by three relevant genotypes that all displayed Sg6. These genotypes unique for the West Bank showed a lower infectivity and cytotoxicity compared to all other clonal complexes and their affiliated genotypes. Interestingly, the L. pneumophila serotypes ST1 and ST461 were previously identified by in situ-sequence based typing (SBT) as main causative agents of Legionnaires’ disease (LD) in the West Bank at a comparable level. Overall, this study demonstrates the site-specific regional diversity of L. pneumophila genotypes in the West Bank and suggests that a combination of MLVA, cellular infection assays and hierarchical agglomerative cluster analysis allows an improved genotype-based risk assessment.


2009 ◽  
Vol 75 (13) ◽  
pp. 4506-4515 ◽  
Author(s):  
P. Aurass ◽  
B. Pless ◽  
K. Rydzewski ◽  
G. Holland ◽  
N. Bannert ◽  
...  

ABSTRACT Legionella pneumophila, the causative agent of Legionnaires' disease, is an intracellular parasite of eukaryotic cells. In the environment, it colonizes amoebae. After being inhaled into the human lung, the bacteria infect and damage alveolar cells in a way that is mechanistically similar to the amoeba infection. Several L. pneumophila traits, among those the Dot/Icm type IVB protein secretion machinery, are essential for exploiting host cells. In our search for novel Legionella virulence factors, we developed an agar plate assay, designated the scatter screen, which allowed screening for mutants deficient in infecting Acanthamoeba castellanii amoebae. Likewise, an L. pneumophila clone bank consisting of 23,000 transposon mutants was investigated here, and 19 different established Legionella virulence genes, for example, dot/icm genes, were identified. Importantly, 70 novel virulence-associated genes were found. One of those is L. pneumophila bdhA, coding for a protein with homology to established 3-hydroxybutyrate dehydrogenases involved in poly-3-hydroxybutyrate metabolism. Our study revealed that bdhA is cotranscribed with patD, encoding a patatin-like protein of L. pneumophila showing phospholipase A and lysophospholipase A activities. In addition to strongly reduced lipolytic activities and increased poly-3-hydroxybutyrate levels, the L. pneumophila bdhA-patD mutant showed a severe replication defect in amoebae and U937 macrophages. Our data suggest that the operon is involved in poly-3-hydroxybutyrate utilization and phospholipolysis and show that the bdhA-patD operon is a virulence determinant of L. pneumophila. In summary, the screen for amoeba-sensitive Legionella clones efficiently isolated mutants that do not grow in amoebae and, in the case of the bdhA-patD mutant, also human cells.


Sign in / Sign up

Export Citation Format

Share Document