scholarly journals Epigenomic tumor evolution modeling with single-cell methylation data profiling

2021 ◽  
Author(s):  
Xuan Cindy Li ◽  
Yuelin Liu ◽  
Farid Rashidi Mehrabadi ◽  
Salem Malikić ◽  
Stephen M. Mount ◽  
...  

AbstractRecent studies on the heritability of methylation patterns in tumor cells, suggest that tumor heterogeneity and progression can be studied through methylation changes. To elucidate methylation-based evolution trajectories in tumors, we introduce a novel computational frame-work for methylation phylogeny reconstruction, leveraging single cell bisulfite treated whole genome sequencing data (scBS-seq), additionally incorporating copy number information inferred independently from matched single cell RNA sequencing (scRNA-seq) data, when available. Our framework consists of three components: (i) noise-minimizing site selection, (ii) likelihood-based sequencing error correction, and (iii) pairwise expected distance calculation for cells, all designed to mitigate the effect of noise and uncertainty due to data sparsity commonly observed in scBS-seq data. We validate our approach with the scBS-seq data of multi-regionally sampled colorectal cancer cells, and demonstrate that the cell lineages constructed by our method strongly correlate with original sampling regions. Additionally, we show that the constructed phylogeny can be used to impute missing entries, which, in turn, may help reduce sparsity issues in scBS-seq data [email protected]

2021 ◽  
Author(s):  
Xuan C. Li ◽  
Yuelin Liu ◽  
Farid Rashidi ◽  
Salem Malikic ◽  
Stephen M. Mount ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 317-334
Author(s):  
Omar Alaqeeli ◽  
Li Xing ◽  
Xuekui Zhang

Classification tree is a widely used machine learning method. It has multiple implementations as R packages; rpart, ctree, evtree, tree and C5.0. The details of these implementations are not the same, and hence their performances differ from one application to another. We are interested in their performance in the classification of cells using the single-cell RNA-Sequencing data. In this paper, we conducted a benchmark study using 22 Single-Cell RNA-sequencing data sets. Using cross-validation, we compare packages’ prediction performances based on their Precision, Recall, F1-score, Area Under the Curve (AUC). We also compared the Complexity and Run-time of these R packages. Our study shows that rpart and evtree have the best Precision; evtree is the best in Recall, F1-score and AUC; C5.0 prefers more complex trees; tree is consistently much faster than others, although its complexity is often higher than others.


2019 ◽  
Vol 21 (5) ◽  
pp. 1581-1595 ◽  
Author(s):  
Xinlei Zhao ◽  
Shuang Wu ◽  
Nan Fang ◽  
Xiao Sun ◽  
Jue Fan

Abstract Single-cell RNA sequencing (scRNA-seq) has been rapidly developing and widely applied in biological and medical research. Identification of cell types in scRNA-seq data sets is an essential step before in-depth investigations of their functional and pathological roles. However, the conventional workflow based on clustering and marker genes is not scalable for an increasingly large number of scRNA-seq data sets due to complicated procedures and manual annotation. Therefore, a number of tools have been developed recently to predict cell types in new data sets using reference data sets. These methods have not been generally adapted due to a lack of tool benchmarking and user guidance. In this article, we performed a comprehensive and impartial evaluation of nine classification software tools specifically designed for scRNA-seq data sets. Results showed that Seurat based on random forest, SingleR based on correlation analysis and CaSTLe based on XGBoost performed better than others. A simple ensemble voting of all tools can improve the predictive accuracy. Under nonideal situations, such as small-sized and class-imbalanced reference data sets, tools based on cluster-level similarities have superior performance. However, even with the function of assigning ‘unassigned’ labels, it is still challenging to catch novel cell types by solely using any of the single-cell classifiers. This article provides a guideline for researchers to select and apply suitable classification tools in their analysis workflows and sheds some lights on potential direction of future improvement on classification tools.


2017 ◽  
Author(s):  
Maxwell A. Sherman ◽  
Alison R. Barton ◽  
Michael Lodato ◽  
Carl Vitzthum ◽  
Michael E. Coulter ◽  
...  

AbstractSingle cell whole-genome sequencing (scWGS) is providing novel insights into the nature of genetic heterogeneity in normal and diseased cells. However, scWGS introduces DNA amplification-related biases that can confound downstream analysis. Here we present a statistical method, with an accompanying package PaSD-qc (Power Spectral Density-qc), that evaluates the quality of single cell libraries. It uses a modified power spectral density to assess amplification uniformity, amplicon size distribution, autocovariance, and inter-sample consistency as well as identifies aberrantly amplified chromosomes. We demonstrate the usefulness of this tool in evaluating scWGS protocols and in selecting high-quality libraries from low-coverage data for deep sequencing.


2019 ◽  
Author(s):  
Lukas M. Simon ◽  
Fangfang Yan ◽  
Zhongming Zhao

AbstractSingle cell RNA sequencing (scRNA-seq) unfolds complex transcriptomic data sets into detailed cellular maps. Despite recent success, there is a pressing need for specialized methods tailored towards the functional interpretation of these cellular maps. Here, we present DrivAER, a machine learning approach that scores annotated gene sets based on their relevance to user-specified outcomes such as pseudotemporal ordering or disease status. We demonstrate that DrivAER extracts the key driving pathways and transcription factors that regulate complex biological processes from scRNA-seq data.


2016 ◽  
Author(s):  
Jack Kuipers ◽  
Katharina Jahn ◽  
Benjamin J. Raphael ◽  
Niko Beerenwinkel

The infinite sites assumption, which states that every genomic position mutates at most once over the lifetime of a tumor, is central to current approaches for reconstructing mutation histories of tumors, but has never been tested explicitly. We developed a rigorous statistical framework to test the assumption with single-cell sequencing data. The framework accounts for the high noise and contamination present in such data. We found strong evidence for recurrent mutations at the same site in 8 out of 9 single-cell sequencing datasets from human tumors. Six cases involved the loss of earlier mutations, five of which occurred at sites unaffected by large scale genomic deletions. Two cases exhibited parallel mutation, including the dataset with the strongest evidence of recurrence. Our results refute the general validity of the infinite sites assumption and indicate that more complex models are needed to adequately quantify intra-tumor heterogeneity.


Author(s):  
Xin Chen ◽  
Zhaowei Yang ◽  
Wanqiu Chen ◽  
Yongmei Zhao ◽  
Andrew Farmer ◽  
...  

AbstractSingle-cell RNA sequencing (scRNA-seq) is developing rapidly, and investigators seeking to use this technology are left with a variety of options for both experimental platform and bioinformatics methods. There is an urgent need for scRNA-seq reference datasets for benchmarking of different scRNA-seq platforms and bioinformatics methods. To be broadly applicable, these should be generated from renewable, well characterized reference samples and processed in multiple centers across different platforms. Here we present a benchmarking scRNA-seq dataset that includes 20 scRNA-seq datasets acquired either as a mixtures or as individual samples from two biologically distinct cell lines for which a large amount of multi-platform whole genome sequencing data are also available. These scRNA-seq datasets were generated from multiple popular platforms across four sequencing centers. Our benchmark datasets provide a resource that we believe will have great value for the single-cell community by serving as a reference dataset for evaluating various bioinformatics methods for scRNA-seq analyses, including but not limited to data preprocessing, imputation, normalization, clustering, batch correction, and differential analysis.


2021 ◽  
Author(s):  
Xianjie Huang ◽  
Yuanhua Huang

AbstractSummarySingle-cell sequencing is an increasingly used technology and has promising applications in basic research and clinical translations. However, genotyping methods developed for bulk sequencing data have not been well adapted for single-cell data, in terms of both computational parallelization and simplified user interface. Here we introduce a software, cellsnp-lite, implemented in C/C++ and based on well supported package htslib, for genotyping in single-cell sequencing data for both droplet and well based platforms. On various experimental data sets, it shows substantial improvement in computational speed and memory efficiency with retaining highly concordant results compared to existing methods. Cellsnp-lite therefore lightens the genetic analysis for increasingly large single-cell data.AvailabilityThe source code is freely available at https://github.com/single-cell-genetics/[email protected]


Author(s):  
Ni Huang ◽  
Paola Perez ◽  
Takafumi Kato ◽  
Yu Mikami ◽  
Kenichi Okuda ◽  
...  

ABSTRACTDespite signs of infection, the involvement of the oral cavity in COVID-19 is poorly understood. To address this, single-cell RNA sequencing data-sets were integrated from human minor salivary glands and gingiva to identify 11 epithelial, 7 mesenchymal, and 15 immune cell clusters. Analysis of SARS-CoV-2 viral entry factor expression showed enrichment in epithelia including the ducts and acini of the salivary glands and the suprabasal cells of the mucosae. COVID-19 autopsy tissues confirmed in vivo SARS-CoV-2 infection in the salivary glands and mucosa. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 expression and SARS-CoV-2 RNA. Matched nasopharyngeal and saliva samples found distinct viral shedding dynamics and viral burden in saliva correlated with COVID-19 symptoms including taste loss. Upon recovery, this cohort exhibited salivary antibodies against SARS-CoV-2 proteins. Collectively, the oral cavity represents a robust site for COVID-19 infection and implicates saliva in viral transmission.


2019 ◽  
Author(s):  
Hoon Kim ◽  
Nam Nguyen ◽  
Kristen Turner ◽  
Sihan Wu ◽  
Jihe Liu ◽  
...  

Extrachromosomal DNA (ecDNA) amplification promotes high oncogene copy number, intratumoral genetic heterogeneity, and accelerated tumor evolution1–3, but its frequency and clinical impact are not well understood. Here we show, using computational analysis of whole-genome sequencing data from 1,979 cancer patients, that ecDNA amplification occurs in at least 26% of human cancers, of a wide variety of histological types, but not in whole blood or normal tissue. We demonstrate a highly significant enrichment for oncogenes on amplified ecDNA and that the most common recurrent oncogene amplifications arise on ecDNA. EcDNA amplifications resulted in higher levels of oncogene transcription compared to copy number matched linear DNA, coupled with enhanced chromatin accessibility. Patients whose tumors have ecDNA-based oncogene amplification showed increase of cell proliferation signature activity, greater likelihood of lymph node spread at initial diagnosis, and significantly shorter survival, even when controlled for tissue type, than do patients whose cancers are not driven by ecDNA-based oncogene amplification. The results presented here demonstrate that ecDNA-based oncogene amplification plays a central role in driving the poor outcome for patients with some of the most aggressive forms of cancers.


Sign in / Sign up

Export Citation Format

Share Document