scholarly journals Effects of sequence motifs in the yeast 3′ untranslated region determined from massively-parallel assays of random sequences

2021 ◽  
Author(s):  
Andrew Savinov ◽  
Benjamin M. Brandsen ◽  
Brooke E. Angell ◽  
Josh T. Cuperus ◽  
Stanley Fields

The 3′ untranslated region (UTR) plays critical roles in determining the level of gene expression, through effects on activities such as mRNA stability and translation. The underlying functional elements within this region have largely been identified through analyses of the limited number of native genes. To explore the effects of sequence elements when not present in biologically evolved sequence backgrounds, we analyzed hundreds of thousands of random 50-mers inserted into the 3′ UTR of a reporter gene in the yeast Saccharomyces cerevisiae. We determined relative protein expression levels from the fitness of a library of transformants in a growth selection. We find that the consensus 3′ UTR efficiency element significantly boosts expression, independent of sequence context; on the other hand, the consensus positioning element has only a small effect on expression. Some sequence motifs that are binding sites for Puf proteins substantially increase expression in this random library, despite these proteins generally being associated with post-transcriptional downregulation when bound to native mRNAs. Thus, the regulatory effects of 3′ UTR sequence features like the positioning element and Puf binding sites appear to be strongly dependent on their context within native genes, where they exist alongside co-evolved sequence features. Our measurements also allowed a systematic examination of the effects of point mutations within efficiency element motifs across diverse sequence backgrounds. These mutational scans reveal the relative in vivo importance of individual bases in the efficiency element, which likely reflects their roles in binding the Hrp1 protein involved in cleavage and polyadenylation.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Andrew Savinov ◽  
Benjamin M. Brandsen ◽  
Brooke E. Angell ◽  
Josh T. Cuperus ◽  
Stanley Fields

Abstract Background The 3′ untranslated region (UTR) plays critical roles in determining the level of gene expression through effects on activities such as mRNA stability and translation. Functional elements within this region have largely been identified through analyses of native genes, which contain multiple co-evolved sequence features. Results To explore the effects of 3′ UTR sequence elements outside of native sequence contexts, we analyze hundreds of thousands of random 50-mers inserted into the 3′ UTR of a reporter gene in the yeast Saccharomyces cerevisiae. We determine relative protein expression levels from the fitness of transformants in a growth selection. We find that the consensus 3′ UTR efficiency element significantly boosts expression, independent of sequence context; on the other hand, the consensus positioning element has only a small effect on expression. Some sequence motifs that are binding sites for Puf proteins substantially increase expression in the library, despite these proteins generally being associated with post-transcriptional downregulation of native mRNAs. Our measurements also allow a systematic examination of the effects of point mutations within efficiency element motifs across diverse sequence backgrounds. These mutational scans reveal the relative in vivo importance of individual bases in the efficiency element, which likely reflects their roles in binding the Hrp1 protein involved in cleavage and polyadenylation. Conclusions The regulatory effects of some 3′ UTR sequence features, like the efficiency element, are consistent regardless of sequence context. In contrast, the consequences of other 3′ UTR features appear to be strongly dependent on their evolved context within native genes.


1990 ◽  
Vol 10 (11) ◽  
pp. 5679-5687
Author(s):  
C K Barlowe ◽  
D R Appling

In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.


1991 ◽  
Vol 11 (11) ◽  
pp. 5648-5659
Author(s):  
F J McNally ◽  
J Rine

Copies of the mating-type genes are present at three loci on chromosome III of the yeast Saccharomyces cerevisiae. The genes at the MAT locus are transcribed, whereas the identical genes at the silent loci, HML and HMR, are not transcribed. Several genes, including the four SIR genes, and two sites, HMR-E and HMR-I, are required for repression of transcription at the HMR locus. Three elements have been implicated in the function of the HMR-E silencer: a binding site for the RAP1 protein, a binding site for the ABF1 protein, and an 11-bp consensus sequence common to nearly all autonomously replicating sequence (ARS) elements (putative origins of DNA replication). RAP1 and ABF1 binding sites of different sequence than those found at HMR-E were joined with an 11-bp ARS consensus sequence to form a synthetic silencer. The synthetic silencer was able to repress transcription of the HMRa1 gene, confirming that binding sites for RAP1 and ABF1 and the 11-bp ARS consensus sequence were the functional components of the silencer in vivo. Mutations in the ABF1 binding site or in the ARS consensus sequence of the synthetic silencer caused nearly complete derepression of transcription at HMR. The ARS consensus sequence mutation also eliminated the ARS activity of the synthetic silencer. These data suggested that replication initiation at the HMR-E silencer was required for establishment of the repressed state at the HMR locus.


1999 ◽  
Vol 19 (11) ◽  
pp. 7461-7472 ◽  
Author(s):  
Yeganeh Zebarjadian ◽  
Tom King ◽  
Maurille J. Fournier ◽  
Louise Clarke ◽  
John Carbon

ABSTRACT In budding yeast (Saccharomyces cerevisiae), the majority of box H/ACA small nucleolar RNPs (snoRNPs) have been shown to direct site-specific pseudouridylation of rRNA. Among the known protein components of H/ACA snoRNPs, the essential nucleolar protein Cbf5p is the most likely pseudouridine (Ψ) synthase. Cbf5p has considerable sequence similarity to Escherichia coli TruBp, a known Ψ synthase, and shares the “KP” and “XLD” conserved sequence motifs found in the catalytic domains of three distinct families of known and putative Ψ synthases. To gain additional evidence on the role of Cbf5p in rRNA biosynthesis, we have used in vitro mutagenesis techniques to introduce various alanine substitutions into the putative Ψ synthase domain of Cbf5p. Yeast strains expressing these mutatedcbf5 genes in a cbf5Δ null background are viable at 25°C but display pronounced cold- and heat-sensitive growth phenotypes. Most of the mutants contain reduced levels of Ψ in rRNA at extreme temperatures. Substitution of alanine for an aspartic acid residue in the conserved XLD motif of Cbf5p (mutantcbf5D95A) abolishes in vivo pseudouridylation of rRNA. Some of the mutants are temperature sensitive both for growth and for formation of Ψ in the rRNA. In most cases, the impaired growth phenotypes are not relieved by transcription of the rRNA from a polymerase II-driven promoter, indicating the absence of polymerase I-related transcriptional defects. There is little or no abnormal accumulation of pre-rRNAs in these mutants, although preferential inhibition of 18S rRNA synthesis is seen in mutantcbf5D95A, which lacks Ψ in rRNA. A subset of mutations in the Ψ synthase domain impairs association of the altered Cbf5p proteins with selected box H/ACA snoRNAs, suggesting that the functional catalytic domain is essential for that interaction. Our results provide additional evidence that Cbf5p is the Ψ synthase component of box H/ACA snoRNPs and suggest that the pseudouridylation of rRNA, although not absolutely required for cell survival, is essential for the formation of fully functional ribosomes.


1990 ◽  
Vol 10 (3) ◽  
pp. 887-897 ◽  
Author(s):  
A R Buchman ◽  
R D Kornberg

ABFI (ARS-binding protein I) is a yeast protein that binds specific DNA sequences associated with several autonomously replicating sequences (ARSs). ABFI also binds sequences located in promoter regions of some yeast genes, including DED1, an essential gene of unknown function that is transcribed constitutively at a high level. ABFI was purified by specific binding to the DED1 upstream activating sequence (UAS) and was found to recognize related sequences at several other promoters, at an ARS (ARS1), and at a transcriptional silencer (HMR E). All ABFI-binding sites, regardless of origin, provided weak UAS function in vivo when examined in test plasmids. UAS function was abolished by point mutations that reduced ABFI binding in vitro. Analysis of the DED1 promoter showed that two ABFI-binding sites combine synergistically with an adjacent T-rich sequence to form a strong constitutive activator. The DED1 T-rich element acted synergistically with all other ABFI-binding sites and with binding sites for other multifunctional yeast activators. An examination of the properties of sequences surrounding ARS1 left open the possibility that ABFI enhances the initiation of DNA replication at ARS1 by transcriptional activation.


1992 ◽  
Vol 12 (6) ◽  
pp. 2690-2700 ◽  
Author(s):  
M A Huie ◽  
E W Scott ◽  
C M Drazinic ◽  
M C Lopez ◽  
I K Hornstra ◽  
...  

GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'.


1991 ◽  
Vol 11 (6) ◽  
pp. 3060-3069 ◽  
Author(s):  
S Irniger ◽  
C M Egli ◽  
G H Braus

This report provides an analysis of the function of polyadenylation sites from six different genes of the yeast Saccharomyces cerevisiae. These sites were tested for their ability to turn off read-through transcription into the URA3 gene in vivo when inserted into an ACT-URA3 fusion gene. The 3' ends of all polyadenylation sites inserted into the test system in their natural configuration are identical to the 3' ends of the chromosomal genes. We identified two classes of polyadenylation sites: (i) efficient sites (originating from the genes GCN4 and PHO5) that were functional in a strict orientation-dependent manner and (ii) bidirectional sites (derived from ARO4, TRP1, and TRP4) that had a distinctly reduced efficiency. The ADH1 polyadenylation site was efficient and bidirectional and was shown to be a combination of two polyadenylation sites of two convergently transcribed genes. Sequence comparison revealed that all efficient unidirectional polyadenylation sites contain the sequence TTTTTAT, whereas all bidirectional sites have the tripartite sequence TAG...TA (T)GT...TTT. Both sequence elements have previously been proposed to be involved in 3' end formation. Site-directed point mutagenesis of the TTTTTAT sequence had no effect, whereas mutations within the tripartite sequence caused a reduced efficiency for 3' end formation. The tripartite sequence alone, however, is not sufficient for 3' end formation, but it might be part of a signal sequence in the bidirectional class of yeast polyadenylation sites. Our findings support the assumption that there are at least two different mechanisms with different sequence elements directing 3' end formation in yeast.


1993 ◽  
Vol 13 (11) ◽  
pp. 6841-6848 ◽  
Author(s):  
V Goguel ◽  
Y Wang ◽  
M Rosbash

To examine the stability of yeast (Saccharomyces cerevisiae) pre-mRNA structures, we inserted a series of small sequence elements that generated potential RNA hairpins at the 5' splice site and branch point regions. We analyzed spliceosome assembly and splicing in vitro as well as splicing and nuclear pre-mRNA retention in vivo. Surprisingly, the inhibition of in vivo splicing approximately paralleled that of in vitro splicing. Even a 6-nucleotide hairpin could be shown to inhibit splicing, and a 15-nucleotide hairpin gave rise to almost complete inhibition. The in vitro results indicate that hairpins that sequester the 5' splice site have a major effect on the early steps of spliceosome assembly, including U1 small nuclear ribonucleoprotein binding. The in vivo experiments lead to comparable conclusions as the sequestering hairpins apparently result in the transport of pre-mRNA to the cytoplasm. The observations are compared with previous data from both yeast and mammalian systems and suggest an important effect of pre-mRNA structure on in vivo splicing.


Development ◽  
1999 ◽  
Vol 126 (17) ◽  
pp. 3905-3913 ◽  
Author(s):  
C. Fritsch ◽  
J.L. Brown ◽  
J.A. Kassis ◽  
J. Muller

Polycomb group (PcG) proteins repress homeotic genes in cells where these genes must remain inactive during development. This repression requires cis-acting silencers, also called PcG response elements. Currently, these silencers are ill-defined sequences and it is not known how PcG proteins associate with DNA. Here, we show that the Drosophila PcG protein Pleiohomeotic binds to specific sites in a silencer of the homeotic gene Ultrabithorax. In an Ultrabithorax reporter gene, point mutations in these Pleiohomeotic binding sites abolish PcG repression in vivo. Hence, DNA-bound Pleiohomeotic protein may function in the recruitment of other non-DNA-binding PcG proteins to homeotic gene silencers.


Sign in / Sign up

Export Citation Format

Share Document