scholarly journals Sub-millisecond conformational transitions of short single-stranded DNA lattices by photon correlation single-molecule FRET

2021 ◽  
Author(s):  
Brett Israels ◽  
Claire S. Albrecht ◽  
Anson Dang ◽  
Megan Barney ◽  
Peter H. von Hippel ◽  
...  

Thermally-driven conformational fluctuations (or 'breathing') of DNA plays important roles in the function and regulation of the 'macromolecular machinery of genome expression.' Fluctuations in double-stranded (ds) DNA are involved in the transient exposure of pathways to protein binding sites within the DNA framework, leading to the binding of functional and regulatory proteins to single-stranded (ss) DNA templates. These interactions often require that the ssDNA sequences, as well as the proteins involved, assume transient conformations critical for successful binding. Here we use microsecond-resolved single-molecule F&oumlrster Resonance Energy Transfer (smFRET) experiments to investigate the backbone fluctuations of short (ss) oligo- oligo(dT)n templates within DNA constructs that can also serve as models for ss-dsDNA junctions. Such junctions, as well as the attached ssDNA sequences, are involved in the binding of ssDNA binding (ssb) proteins that control and integrate the mechanisms of DNA replication complexes. We have used these data to determine multi-order time-correlation functions (TCFs) and probability distribution functions (PDFs) that characterize the kinetic and thermodynamic behavior of the system. We find that the oligo(dT)n tails of ss-dsDNA constructs inter-convert, on sub-millisecond time-scales, between three macrostates with distinctly different end-to-end distances. These are: (i) a 'compact' macrostate that represents the dominant species at equilibrium; (ii) a 'partially extended' macrostate that exists as a minority species; and (iii) a 'highly extended' macrostate that is present in trace amounts. We propose a model for ssDNA secondary structure that advances our understanding of how spontaneously formed nucleic acid conformations may facilitate the activities of ssDNA associating proteins.

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Kun Yang ◽  
Yong Yang ◽  
Chun-yang Zhang

AbstractSingle-molecule Förster resonance energy transfer (sm- FRET) has been widely employed to detect biomarkers and to probe the structure and dynamics of biomolecules. By monitoring the biological reaction in a spatio-temporal manner, smFRET can reveal the transient intermediates of biological processes that cannot be obtained by conventional ensemble measurements. This review provides an overview of singlemolecule FRET and its applications in ultrasensitive detection of biomolecules, including the major techniques and the molecular probes used for smFRET as well as the biomedical applications of smFRET. Especially, the combination of sm- FRET with new technologies might expand its applications in clinical diagnosis and biomedical research


2020 ◽  
Author(s):  
Ricky C. Cheng ◽  
Ayush Krishnamoorti ◽  
Vladimir Berka ◽  
Ryan J Durham ◽  
Vasanthi Jayaraman ◽  
...  

Abstract“CLC” transporters catalyze the exchange of chloride ions for protons across cellular membranes. As secondary active transporters, CLCs must alternately allow ion access to and from the extracellular and intracellular sides of the membrane, adopting outward-facing and inward-facing conformational states. Here, we use single-molecule Förster resonance energy transfer (smFRET) to monitor the conformational state of CLC-ec1, an E. coli homolog for which high-resolution structures of occluded and outward-facing states are known. Since each subunit within the CLC homodimer contains its own transport pathways for chloride and protons, we developed a labeling strategy to follow conformational change within a subunit, without crosstalk from the second subunit of the dimer. Using this strategy, we evaluated smFRET efficiencies for labels positioned on the extracellular side of the protein, to monitor the status of the outer permeation pathway. When [H+] is increased to enrich the outward-facing state, the smFRET efficiencies for this pair decrease. In a triple-mutant CLC-ec1 that mimics the protonated state of the protein and is known to favor the outward-facing conformation, the lower smFRET efficiency is observed at both low and high [H+]. These results confirm that the smFRET assay is following the transition to the outward-facing state and demonstrate the feasibility of using smFRET to monitor the relatively small (~1 Å) motions involved in CLC transporter conformational change. Using the smFRET assay, we show that the conformation of the partner subunit does not influence the conformation of the subunit being monitored by smFRET, thus providing evidence for the independence of the two subunits in the transport process.SUMMARYCheng, Krishnamoorti et al. use single-molecule Förster energy resonance transfer measurements to monitor the conformation of a CLC transporter and to show that the conformational state is not influenced by the neighboring subunit.


2015 ◽  
Vol 184 ◽  
pp. 131-142 ◽  
Author(s):  
Lasse L. Hildebrandt ◽  
Søren Preus ◽  
Victoria Birkedal

Förster resonance energy transfer (FRET) microscopy at the single molecule level has the potential to yield information on intra and intermolecular distances within the 2–10 nm range of molecules or molecular complexes that undergo frequent conformation changes. A pre-requirement for obtaining accurate distance information is to determine quantitative instrument independent FRET efficiency values. Here, we applied and evaluated a procedure to determine quantitative FRET efficiencies directly from individual fluorescence time traces of surface immobilized DNA molecules without the need for external calibrants. To probe the robustness of the approach over a wide range of FRET efficiencies we used a set of doubly labelled double stranded DNA samples, where the acceptor position was varied systematically. Interestingly, we found that fluorescence contributions arising from direct acceptor excitation following donor excitation are intrinsically taken into account in these conditions as other correction factors can compensate for inaccurate values of these parameters. We give here guidelines, that can be used through tools within the iSMS software (http://www.isms.au.dk), for determining quantitative FRET and assess uncertainties linked with the procedure. Our results provide insights into the experimental parameters governing quantitative FRET determination, which is essential for obtaining accurate structural information from a wide range of biomolecules.


2015 ◽  
Vol 184 ◽  
pp. 51-69 ◽  
Author(s):  
S. K. Sekatskii ◽  
K. Dukenbayev ◽  
M. Mensi ◽  
A. G. Mikhaylov ◽  
E. Rostova ◽  
...  

A few years ago, single molecule Fluorescence Resonance Energy Transfer Scanning Near-Field Optical Microscope (FRET SNOM) images were demonstrated using CdSe semiconductor nanocrystal–dye molecules as donor–acceptor pairs. Corresponding experiments reveal the necessity to exploit much more photostable fluorescent centers for such an imaging technique to become a practically used tool. Here we report the results of our experiments attempting to use nitrogen vacancy (NV) color centers in nanodiamond (ND) crystals, which are claimed to be extremely photostable, for FRET SNOM. All attempts were unsuccessful, and as a plausible explanation we propose the absence (instability) of NV centers lying close enough to the ND border. We also report improvements in SNOM construction that are necessary for single molecule FRET SNOM imaging. In particular, we present the first topographical images of single strand DNA molecules obtained with fiber-based SNOM. The prospects of using rare earth ions in crystals, which are known to be extremely photostable, for single molecule FRET SNOM at room temperature and quantum informatics at liquid helium temperatures, where FRET is a coherent process, are also discussed.


Author(s):  
Johannes Thomsen ◽  
Magnus B. Sletfjerding ◽  
Stefano Stella ◽  
Bijoya Paul ◽  
Simon Bo Jensen ◽  
...  

AbstractSingle molecule Förster Resonance energy transfer (smFRET) is a mature and adaptable method for studying the structure of biomolecules and integrating their dynamics into structural biology. The development of high throughput methodologies and the growth of commercial instrumentation have outpaced the development of rapid, standardized, and fully automated methodologies to objectively analyze the wealth of produced data. Here we present DeepFRET, an automated standalone solution based on deep learning, where the only crucial human intervention in transiting from raw microscope images to histogram of biomolecule behavior, is a user-adjustable quality threshold. Integrating all standard features of smFRET analysis, DeepFRET will consequently output common kinetic information metrics for biomolecules. We validated the utility of DeepFRET by performing quantitative analysis on simulated, ground truth, data and real smFRET data. The accuracy of classification by DeepFRET outperformed human operators and current commonly used hard threshold and reached >95% precision accuracy only requiring a fraction of the time (<1% as compared to human operators) on ground truth data. Its flawless and rapid operation on real data demonstrates its wide applicability. This level of classification was achieved without any preprocessing or parameter setting by human operators, demonstrating DeepFRET’s capacity to objectively quantify biomolecular dynamics. The provided a standalone executable based on open source code capitalises on the widespread adaptation of machine learning and may contribute to the effort of benchmarking smFRET for structural biology insights.


2017 ◽  
Author(s):  
Mengyi Yang ◽  
Sijia Peng ◽  
Ruirui Sun ◽  
Jingdi Lin ◽  
Nan Wang ◽  
...  

SummaryOff-target binding and cleavage by Cas9 pose as major challenges in its applications. How conformational dynamics of Cas9 governs its nuclease activity under on- and off-target conditions remains largely unknown. Here, using intra-molecular single molecule fluorescence resonance energy transfer measurements, we revealed that Cas9 in apo, sgRNA-bound, and dsDNA/sgRNA-bound forms all spontaneously transits between three major conformational states, mainly reflecting significant conformational mobility of the catalytic HNH domain. We furthermore uncovered a surprising long-range allosteric communication between the HNH domain and RNA/DNA heteroduplex at the PAM-distal end to ensure correct positioning of the catalytic site, which demonstrated a unique proofreading mechanism served as the last checkpoint before DNA cleavage. Several Cas9 residues were likely to mediate the allosteric communication and proofreading step. Modulating interactions between Cas9 and heteroduplex at the distal end by introducing mutations on these sites provides an alternative route to improve and optimize the CRISPR/Cas9 toolbox.


2019 ◽  
Author(s):  
Hugh Wilson ◽  
Quan Wang

ABSTRACTSingle-molecule Förster resonance energy transfer (smFRET) has become a versatile and widespread method to probe nanoscale conformation and dynamics. However, current experimental protocols often resort to molecule immobilization for long observation times and rarely approach the resolution limit of FRET-based nanoscale metrology. Here we present ABEL-FRET, an immobilization-free platform for smFRET measurements with near shot-noise limited, Angstrom-level resolution in FRET efficiency. Furthermore, ABEL-FRET naturally integrates hydrodynamic profiling, which harnesses single-molecule diffusion coefficient to enhance FRET sensing of biological processes.


2021 ◽  
Vol 8 ◽  
Author(s):  
Debolina Bandyopadhyay ◽  
Padmaja P. Mishra

In addition to the canonical double helix form, DNA is known to be extrapolated into several other secondary structural patterns involving themselves in inter- and intramolecular type hydrogen bonding. The secondary structures of nucleic acids go through several stages of multiple, complex, and interconvertible heterogeneous conformations. The journey of DNA through these conformers has significant importance and has been monitored thoroughly to establish qualitative and quantitative information about the transition between the unfolded, folded, misfolded, and partially folded states. During this structural interconversion, there always exist specific populations of intermediates, which are short-lived or sometimes even do not accumulate within a heterogeneous population and are challenging to characterize using conventional ensemble techniques. The single-molecule FRET(sm-FRET) microspectroscopic method has the advantages to overcome these limitations and monitors biological phenomena transpiring at a measurable high rate and balanced stochastically over time. Thus, tracing the time trajectory of a particular molecule enables direct measurement of the rate constant of each transition step, including the intermediates that are hidden in the ensemble level due to their low concentrations. This review is focused on the advantages of the employment of single-molecule Forster’s resonance energy transfer (sm-FRET), which is worthwhile to access the dynamic architecture and structural transition of various secondary structures that DNA adopts, without letting the donor of one molecule to cross-talk with the acceptor of any other. We have emphasized the studies performed to explore the states of folding and unfolding of several nucleic acid secondary structures, for example, the DNA hairpin, Holliday junction, G-quadruplex, and i-motif.


2011 ◽  
Vol 392 (1-2) ◽  
Author(s):  
Michael Börsch

Abstract Conformational changes of proteins can be monitored in real time by fluorescence resonance energy transfer (FRET). Two different fluorophores have to be attached to those protein domains which move during function. Distance fluctuations between the fluorophores are measured by relative fluorescence intensity changes or fluorescence lifetime changes. The rotary mechanics of the two motors of FoF1-ATP synthase have been studied in vitro by single-molecule FRET. The results are summarized and perspectives for other transport ATPases are discussed.


Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 140 ◽  
Author(s):  
Sharonda LeBlanc ◽  
Prakash Kulkarni ◽  
Keith Weninger

Intrinsically disordered proteins (IDPs) are often modeled using ideas from polymer physics that suggest they smoothly explore all corners of configuration space. Experimental verification of this random, dynamic behavior is difficult as random fluctuations of IDPs cannot be synchronized across an ensemble. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) is one of the few approaches that are sensitive to transient populations of sub-states within molecular ensembles. In some implementations, smFRET has sufficient time resolution to resolve transitions in IDP behaviors. Here we present experimental issues to consider when applying smFRET to study IDP configuration. We illustrate the power of applying smFRET to IDPs by discussing two cases in the literature of protein systems for which smFRET has successfully reported phosphorylation-induced modification (but not elimination) of the disordered properties that have been connected to impacts on the related biological function. The examples we discuss, PAGE4 and a disordered segment of the GluN2B subunit of the NMDA receptor, illustrate the great potential of smFRET to inform how IDP function can be regulated by controlling the detailed ensemble of disordered states within biological networks.


Sign in / Sign up

Export Citation Format

Share Document