scholarly journals Measurement of activity of developmental signal transduction pathways to quantify stem cell pluripotency and phenotypically characterize differentiated cells

2021 ◽  
Author(s):  
Yvonne Wesseling-Rozendaal ◽  
Laurent Holtzer ◽  
Wim Verhaegh ◽  
Anja van de Stolpe

AbstractStem cell research is emerging both as a scientifically and clinically relevant area. One of the current challenges in stem cell research and regenerative medicine is assessment of the pluripotency state of induced pluripotent stem (iPS) cells. Once a stem cell differentiation process is initiated the challenge is how to assess the state of differentiation, and the purity of the differentiated cell population. Stem cell potency and differentiation states are determined by tightly coordinated activity of developmental signaling pathways, such as the Notch, Hedgehog, TGFβ, Wnt, PI3K, MAPK-AP1, and NFκB pathways. Source of the stem cells and culture protocols may influence stem cell phenotype, with potential consequences for pluripotency and in general for experimental reproducibility. Human pluripotent embryonic (hES) and iPS stem cell lines under different culture conditions, organ derived multipotent stem cells, and differentiated cell types, were phenotyped with respect to functional activity of developmental signaling pathways.MethodsWe previously reported on the development and validation of a novel assay platform for quantitative measurement of activity of multiple signal transduction pathways (STP) simultaneously in a single sample, based on interpreting a preselected set of target mRNA expression levels. Assays were used to calculate Notch, Hedgehog, TGFβ, Wnt, PI3K, MAPK-AP1, and NFκB signal transduction pathway activity scores for individual cell samples, using publicly available Affymetrix expression microarray data.ResultsCulture conditions (e.g. mouse versus human feeder) influenced pluripotent stem cell pathway activity profiles. hES and iPS stem cell lines cultured in the same lab under similar conditions showed minimal variation in pathway activity profile despite different genetic backgrounds, while across different labs larger variations were measured, even for the same stem cell line. Pathway activity scores for PI3K, MAPK, Hedgehog, Notch, TGFβ, and NFκB pathways rapidly decreased upon pluripotent stem cell differentiation, while increasing for the Wnt pathway. Further differentiation to intestinal progenitor cells resulted in higher PI3K, Wnt and Notch pathway activity. In multipotent intestinal crypt stem cells obtained from intestinal mucosa samples, similar Notch and even higher Wnt pathway activity were measured, which disappeared upon differentiation to mucosal cells.ConclusionResults support the validity of using these STP assays for quantitative phenotyping of stem cells and differentiated derivatives, and enabled definition of a pluripotency profile with high PI3K, MAPK, Hedgehog, TGFβ, Notch, and NFκB, and low Wnt pathway activity scores.Measurement of combined signaling pathway activity scores is expected to improve experimental reproducibility and standardization of pluripotent and multipotent stem cell culture and differentiation. It enables controlled manipulation of signaling pathway activity using pathway targeting compounds. An envisioned additional utility may lie in quality control for regenerative medicine purposes.

2015 ◽  
Vol 370 (1680) ◽  
pp. 20140365 ◽  
Author(s):  
Maria Rostovskaya ◽  
Nicholas Bredenkamp ◽  
Austin Smith

Human pluripotent stem cells can in principle be used as a source of any differentiated cell type for disease modelling, drug screening, toxicology testing or cell replacement therapy. Type I diabetes is considered a major target for stem cell applications due to the shortage of primary human beta cells. Several protocols have been reported for generating pancreatic progenitors by in vitro differentiation of human pluripotent stem cells. Here we first assessed one of these protocols on a panel of pluripotent stem cell lines for capacity to engender glucose sensitive insulin-producing cells after engraftment in immunocompromised mice. We observed variable outcomes with only one cell line showing a low level of glucose response. We, therefore, undertook a systematic comparison of different methods for inducing definitive endoderm and subsequently pancreatic differentiation. Of several protocols tested, we identified a combined approach that robustly generated pancreatic progenitors in vitro from both embryo-derived and induced pluripotent stem cells. These findings suggest that, although there are intrinsic differences in lineage specification propensity between pluripotent stem cell lines, optimal differentiation procedures may consistently direct a substantial fraction of cells into pancreatic specification.


2020 ◽  
Author(s):  
David Melamed ◽  
Daniel Kalderon

AbstractMany adult stem cells are maintained as a community by population asymmetry, wherein stochastic actions of individual cells collectively result in a balance between stem cell division and differentiation. We have used Drosophila Follicle Stem Cells (FSCs) as a paradigm to explore the extracellular niche signals that define a stem cell domain and organize stem cell behavior. FSCs produce transit-amplifying Follicle Cells (FCs) from their posterior face and quiescent Escort Cells (ECs) to their anterior. Here we show that JAK-STAT pathway activity, which declines from posterior to anterior, dictates the pattern of divisions over the FSC and EC domains, promotes more posterior FSC locations and conversion to FCs, while opposing EC production. A Wnt pathway gradient of opposite polarity promotes more anterior FSC locations and EC production and opposes FC production. Promotion of both FSC division and conversion to FCs by JAK-STAT signaling buffers the effects of genetically altered pathway activity on FSC numbers and balances the four-fold higher rate of differentiation at the posterior face of the FSC domain with a higher rate of FSC division in the most posterior layer. However, genetic elimination of Wnt pathway activity exacerbated elevated FC production resulting from increased JAK-STAT pathway activity, leading to rapid FSC depletion despite high rates of division. The two pathways combine to define a stem cell domain through concerted effects on FSC differentiation to ECs (high Wnt, low JAK-STAT) and FCs (low Wnt, high JAK-STAT) at each end of opposing signaling gradients, further enforced by quiescence at the anterior border due to declining JAK-STAT pathway activity.


2020 ◽  
Vol 44 ◽  
pp. 101721 ◽  
Author(s):  
Lydiane Pichard ◽  
Jean-Marc Brondelo ◽  
Fabienne Becker ◽  
Romain Desprat ◽  
Frédéric De Ceuninck ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1523 ◽  
Author(s):  
Laetitia Barrault ◽  
Jacqueline Gide ◽  
Tingting Qing ◽  
Lea Lesueur ◽  
Jorg Tost ◽  
...  

Substantial variations in differentiation properties have been reported among human pluripotent cell lines (hPSC), which could affect their utility and clinical safety. We characterized the variable osteogenic capacity observed between different human pluripotent stem cell lines. By focusing on the miRNA expression profile, we demonstrated that the osteogenic differentiation propensity of human pluripotent stem cell lines could be associated with the methylation status and the expression of miRNAs from the imprinted DLK1/DIO3 locus. More specifically, quantitative analysis of the expression of six different miRNAs of that locus prospectively identified human embryonic stem cells and human-induced pluripotent stem cells with differential osteogenic differentiation capacities. At the molecular and functional levels, we showed that these miRNAs modulated the expression of the activin receptor type 2B and the downstream signal transduction, which impacted osteogenesis. In conclusion, miRNAs of the imprinted DLK1/DIO3 locus appear to have both a predictive value and a functional impact in determining the osteogenic fate of human pluripotent stem cells.


2021 ◽  
Vol 53 ◽  
pp. 102297
Author(s):  
Lydiane Pichard ◽  
Jean-Marc Brondello ◽  
Fabienne Becker ◽  
Romain Desprat ◽  
Frédéric De Ceuninck ◽  
...  

2013 ◽  
Vol 25 (1) ◽  
pp. 294
Author(s):  
J.-K. Park ◽  
K.-H. Choi ◽  
D.-C. Son ◽  
J.-I. Oh ◽  
C.-K. Lee

A recent study has reported that pluripotent stem cells can be categorized according to their pluripotent state. The first is the “naïve” state, which is characterised by small, round or dome-shaped colony morphologies, LIF and BMP4 signalling pathways, and 2 active X chromosomes in females; mouse embryonic stem cells (mESC) represent this type. A second “primed” state has also been described and is possible in mouse epiblast stem cells (mEpiSC) or human embryonic stem cells (hESC). These primed state pluripotent stem cells display flattened monolayer colony morphologies, FGF and nodal/activin signalling pathways, and X chromosome inactivation in females. Meanwhile, a few studies have reported that primed pluripotent stem cell lines could be reverted to a naïve pluripotent state using various exogenous factors including GSK3β and MEK inhibitors (2i), LIF, hypoxic conditions, and upregulation of Oct3 or klf4. Therefore, the purpose of this study was to investigate whether a LIF-dependent naïve pluripotent stem cell line could be derived from porcine embryonic fibroblasts (PEF) via various previously reported factors. We were able to successfully induce PEF into a naïve state-like pluripotent stem cell line by viral infection using FUW-tetO-hOCT4, FUW-tetO-hSOX2, FUW-tetO-hKlf4, FUW-tetO-hMYC, and FUW-M2rtTA obtained from Addgene and addition of 2i and LIF. These naive state-like pluripotent stem cells display mESC-like morphologies, clonogenicity by trypsin, and expression of Oct4, Sox2, Nanog, and SSEA1 using PCR, immunocytochemistry, and fluorescence-activated cell sorting. All cell lines maintained stemness characteristics and stable morphology for more than 30 passages. In addition, naïve state-like pluripotent stem cells could be induced to differentiate to fibroblast-like cells by withdrawal of doxycycline, lif, and 2i. These differentiated cells could be regenerated into naïve state-like pluripotent stem cells by addition of doxycycline, lif, and 2i. We suggest that, as a nonpermissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines and needs various exogenous factors, including continuous transgene expression, GSK3β and MEK inhibitors (2i), and LIF to be induced into naïve state-like pluripotent stem cells. This work was supported by the BioGreen 21 Program (PJ0081382011), Rural Development Administration, Republic of Korea.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3496-3496
Author(s):  
Nadine Teichweyde ◽  
Lara Kasperidus ◽  
Peter A Horn ◽  
Hannes Klump

Abstract Generation of hematopoietic stem cells (HSCs) from pluripotent stem cells, in vitro, holds great promise for future somatic gene and cell therapy. So far, HSCs capable of long-term multilineage reconstitution in mice have only been obtained when the homeodomain transcription factor HOXB4 was ectopically expressed during pluripotent stem cell differentiation (Kyba et al. Cell 109(1): 29-37, 2002; Pilat et al. Proc Natl Acad Sci USA 102(34): 12101-12106, 2005; Lesinski et al. Stem Cells Transl Med 1(8): 581-591, 2012). However, the primary "target" cell of HOXB4 during hematopoietic development, in vitro, is not yet known. Its identification is a prerequisite for unambiguously identifying the molecular circuits driving HSC development, at least in vitro. To pin down this cell, we retrovirally expressed HOXB4 or a Tamoxifen-inducible HOXB4-ERT2 fusion protein in different reporter and knock-out mouse embryonic stem cell (ESC) lines. For these experiments, ESCs were differentiated for 6 days as embryoid bodies (EBs), dissociated and subsequently cocultured on OP9 stroma cells in medium supplemented with 100 ng/ml mSCF, 40 ng/ml mTPO, 100 ng/ml hFlt3L and 40 ng/ml hVEGF (STFV) for further 3 days. Use of a Runx1(-/-) ESC-line containing a doxycycline-inducible Runx1 coding sequence (“iRunx1”; kindly provided by G. Lacaud, Manchester) uncovered that HOXB4 acts during formation of the hemogenic endothelium (HE) from which HSCs arise. Without Runx1 induction, which arrests hematopoietic development at the HE-stage, ectopic HOXB4 expression mediated an approximately 30-fold increase in the number of circular endothelial, bona fide HE-sheets being Flk1+VE-Cadherin+Tie2+ (mean values: control: 11+/-4.8 n=7; HOXB4: 301+/-47 n=7; P<0.0001, unpaired, 2-sided Student´s t-test) and expressing Sox17 and Lmo2. This observation suggested an expansion of HE progenitors, detectable from day 5 of EB differentiation on. Determination of their frequencies within the VE-Cadherin+ population revealed a HOXB4-mediated increase from 1:360 cells (control) up to 1:15 cells (HOXB4; 95% C.I. = 1:12-1:21). After additional Runx1 induction, the endothelial cells morphologically underwent an Endothelial-to-Hematopoietic Transition (EHT) as verified at the single cell level by time-lapse microscopy. Concomitantly, they upregulated transcription of Gfi1, Gfi1b and Pu.1, initiated surface expression of the pan-hematopoietic marker CD45 and generated hematopoietic colony forming cells (CFC), thus proving their identity as real hemogenic endothelial cells. Taken together, our results strongly suggest that HOXB4 first and foremost promotes hematopoiesis by substantially increasing the number of hemogenic endothelium progenitors during mouse pluripotent stem cell differentiation. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document