scholarly journals Dynamics of a hepatocyte-cholangiocyte decision-making gene regulatory network during liver development and regeneration

2021 ◽  
Author(s):  
Sarthak Sahoo ◽  
Ashutosh Mishra ◽  
Anna Mae Diehl ◽  
Mohit Kumar Jolly

AbstractLiver is one of the few organs with immense regenerative potential even at adulthood in mammals. It is composed of primarily two cell types: hepatocytes and cholangiocytes, that can trans-differentiate to one another either directly or through intermediate progenitor states, contributing to remarkable regenerative potential of the liver. However, the dynamical features of decision-making between these cell-fates during liver development and regeneration remains elusive. Here, we identify a core gene regulatory network comprising c/EBPα, TGFBR2 and SOX9 that underlies liver development and injury-induced reprogramming. Dynamic simulations for this network reveal its multistable nature, enabling three distinct cell states – hepatocytes, cholangiocytes and liver progenitor cells (hepatoblasts/oval cells) – and stochastic switching among them. Predicted expression signature for these three states are validated through multiple bulk and single-cell transcriptomic datasets collected across developmental stages and injury-induced liver repair. This network can also explain the experimentally observed spatial organisation of phenotypes in liver parenchyma and predict strategies for efficient cellular reprogramming among these cell-fates. Our analysis elucidates how the emergent multistable dynamics of underlying gene regulatory networks drive diverse cell-state decisions in liver development and regeneration.

RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 23222-23233 ◽  
Author(s):  
Wei Liu ◽  
Wen Zhu ◽  
Bo Liao ◽  
Haowen Chen ◽  
Siqi Ren ◽  
...  

Inferring gene regulatory networks from expression data is a central problem in systems biology.


2019 ◽  
Author(s):  
Daniel Morgan ◽  
Matthew Studham ◽  
Andreas Tjärnberg ◽  
Holger Weishaupt ◽  
Fredrik J. Swartling ◽  
...  

AbstractThe gene regulatory network (GRN) of human cells encodes mechanisms to ensure proper functioning. However, if this GRN is dysregulated, the cell may enter into a disease state such as cancer. Understanding the GRN as a system can therefore help identify novel mechanisms underlying disease, which can lead to new therapies. Reliable inference of GRNs is however still a major challenge in systems biology.To deduce regulatory interactions relevant to cancer, we applied a recent computational inference framework to data from perturbation experiments in squamous carcinoma cell line A431. GRNs were inferred using several methods, and the false discovery rate was controlled by the NestBoot framework. We developed a novel approach to assess the predictiveness of inferred GRNs against validation data, despite the lack of a gold standard. The best GRN was significantly more predictive than the null model, both in crossvalidated benchmarks and for an independent dataset of the same genes under a different perturbation design. It agrees with many known links, in addition to predicting a large number of novel interactions from which a subset was experimentally validated. The inferred GRN captures regulatory interactions central to cancer-relevant processes and thus provides mechanistic insights that are useful for future cancer research.Data available at GSE125958Inferred GRNs and inference statistics available at https://dcolin.shinyapps.io/CancerGRN/ Software available at https://bitbucket.org/sonnhammergrni/genespider/src/BFECV/Author SummaryCancer is the second most common cause of death globally, and although cancer treatments have improved in recent years, we need to understand how regulatory mechanisms are altered in cancer to combat the disease efficiently. By applying gene perturbations and inference of gene regulatory networks to 40 genes known or suspected to have a role in cancer due to interactions with the oncogene MYC, we deduce their underlying regulatory interactions. Using a recent computational framework for inference together with a novel method for cross validation, we infer a reliable regulatory model of this system in a completely data driven manner, not reliant on literature or priors. The novel interactions add to the understanding of the progressive oncogenic regulatory process and may provide new targets for therapy.


2020 ◽  
pp. 1052-1075 ◽  
Author(s):  
Dina Elsayad ◽  
A. Ali ◽  
Howida A. Shedeed ◽  
Mohamed F. Tolba

The gene expression analysis is an important research area of Bioinformatics. The gene expression data analysis aims to understand the genes interacting phenomena, gene functionality and the genes mutations effect. The Gene regulatory network analysis is one of the gene expression data analysis tasks. Gene regulatory network aims to study the genes interactions topological organization. The regulatory network is critical for understanding the pathological phenotypes and the normal cell physiology. There are many researches that focus on gene regulatory network analysis but unfortunately some algorithms are affected by data size. Where, the algorithm runtime is proportional to the data size, therefore, some parallel algorithms are presented to enhance the algorithms runtime and efficiency. This work presents a background, mathematical models and comparisons about gene regulatory networks analysis different techniques. In addition, this work proposes Parallel Architecture for Gene Regulatory Network (PAGeneRN).


2021 ◽  
Author(s):  
Deborah Weighill ◽  
Marouen Ben Guebila ◽  
Kimberly Glass ◽  
John Quackenbush ◽  
John Platig

AbstractThe majority of disease-associated genetic variants are thought to have regulatory effects, including the disruption of transcription factor (TF) binding and the alteration of downstream gene expression. Identifying how a person’s genotype affects their individual gene regulatory network has the potential to provide important insights into disease etiology and to enable improved genotype-specific disease risk assessments and treatments. However, the impact of genetic variants is generally not considered when constructing gene regulatory networks. To address this unmet need, we developed EGRET (Estimating the Genetic Regulatory Effect on TFs), which infers a genotype-specific gene regulatory network (GRN) for each individual in a study population by using message passing to integrate genotype-informed TF motif predictions - derived from individual genotype data, the predicted effects of variants on TF binding and gene expression, and TF motif predictions - with TF protein-protein interactions and gene expression. Comparing EGRET networks for two blood-derived cell lines identified genotype-associated cell-line specific regulatory differences which were subsequently validated using allele-specific expression, chromatin accessibility QTLs, and differential TF binding from ChIP-seq. In addition, EGRET GRNs for three cell types across 119 individuals captured regulatory differences associated with disease in a cell-type-specific manner. Our analyses demonstrate that EGRET networks can capture the impact of genetic variants on complex phenotypes, supporting a novel fine-scale stratification of individuals based on their genetic background. EGRET is available through the Network Zoo R package (netZooR v0.9; netzoo.github.io).


2019 ◽  
Author(s):  
Zhang Zhang ◽  
Lifei Wang ◽  
Shuo Wang ◽  
Ruyi Tao ◽  
Jingshu Xiao ◽  
...  

SummaryReconstructing gene regulatory networks (GRNs) and inferring the gene dynamics are important to understand the behavior and the fate of the normal and abnormal cells. Gene regulatory networks could be reconstructed by experimental methods or from gene expression data. Recent advances in Single Cell RNA sequencing technology and the computational method to reconstruct trajectory have generated huge scRNA-seq data tagged with additional time labels. Here, we present a deep learning model “Neural Gene Network Constructor” (NGNC), for inferring gene regulatory network and reconstructing the gene dynamics simultaneously from time series gene expression data. NGNC is a model-free heterogenous model, which can reconstruct any network structure and non-linear dynamics. It consists of two parts: a network generator which incorporating gumbel softmax technique to generate candidate network structure, and a dynamics learner which adopting multiple feedforward neural networks to predict the dynamics. We compare our model with other well-known frameworks on the data set generated by GeneNetWeaver, and achieve the state of the arts results both on network reconstruction and dynamics learning.


Author(s):  
Bing Liu ◽  
Ina Hoeschele ◽  
Alberto de la Fuente

In this chapter, we review the current state of Gene Regulatory Network inference based on ‘Genetical Genomics’ experiments (Brem & Kruglyak, 2005; Brem, Yvert, Clinton & Kruglyak, 2002; Jansen, 2003; Jansen & Nap, 2001; Schadt et al., 2003) as a special case of causal network inference in ‘Systems Genetics’ (Threadgill, 2006). In a Genetical Genomics experiment, a segregating or genetically randomized population is DNA marker genotyped and gene-expression profiled on a genomewide scale. The genotypes are regarded as natural, multifactorial perturbations resulting in different gene-expression ‘phenotypes’, and causal relationships can therefore be established between the measured genotypes and the gene-expression phenotypes. In this chapter, we review different computational approaches to Gene Regulatory Network inference based on the joint analysis of DNA marker and expression data and additionally of DNA sequence information if available. This includes different methods for expression QTL mapping, selection of regulator-target pairs, construction of an encompassing network, which strongly constrains the network search space, and pairwise and multivariate methods for Gene Regulatory Network inference, such as Bayesian Networks and Structural Equation Modeling.


2008 ◽  
Vol 19 (02) ◽  
pp. 283-290 ◽  
Author(s):  
M. ANDRECUT ◽  
S. A. KAUFFMAN ◽  
A. M. MADNI

We report the reconstruction of the topology of gene regulatory network in human tissues. The results show that the connectivity of the regulatory gene network is characterized by a scale-free distribution. This result supports the hypothesis that scale-free networks may represent the common blueprint for gene regulatory networks.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Christopher A Jackson ◽  
Dayanne M Castro ◽  
Giuseppe-Antonio Saldi ◽  
Richard Bonneau ◽  
David Gresham

Understanding how gene expression programs are controlled requires identifying regulatory relationships between transcription factors and target genes. Gene regulatory networks are typically constructed from gene expression data acquired following genetic perturbation or environmental stimulus. Single-cell RNA sequencing (scRNAseq) captures the gene expression state of thousands of individual cells in a single experiment, offering advantages in combinatorial experimental design, large numbers of independent measurements, and accessing the interaction between the cell cycle and environmental responses that is hidden by population-level analysis of gene expression. To leverage these advantages, we developed a method for scRNAseq in budding yeast (Saccharomyces cerevisiae). We pooled diverse transcriptionally barcoded gene deletion mutants in 11 different environmental conditions and determined their expression state by sequencing 38,285 individual cells. We benchmarked a framework for learning gene regulatory networks from scRNAseq data that incorporates multitask learning and constructed a global gene regulatory network comprising 12,228 interactions.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Wenqing Jean Lee ◽  
Sumantra Chatterjee ◽  
Sook Peng Yap ◽  
Siew Lan Lim ◽  
Xing Xing ◽  
...  

Embryogenesis is an intricate process involving multiple genes and pathways. Some of the key transcription factors controlling specific cell types are the Sox trio, namely, Sox5, Sox6, and Sox9, which play crucial roles in organogenesis working in a concerted manner. Much however still needs to be learned about their combinatorial roles during this process. A developmental genomics and systems biology approach offers to complement the reductionist methodology of current developmental biology and provide a more comprehensive and integrated view of the interrelationships of complex regulatory networks that occur during organogenesis. By combining cell type-specific transcriptome analysis and in vivo ChIP-Seq of the Sox trio using mouse embryos, we provide evidence for the direct control of Sox5 and Sox6 by the transcriptional trio in the murine model and by Morpholino knockdown in zebrafish and demonstrate the novel role of Tgfb2, Fbxl18, and Tle3 in formation of Sox5, Sox6, and Sox9 dependent tissues. Concurrently, a complete embryonic gene regulatory network has been generated, identifying a wide repertoire of genes involved and controlled by the Sox trio in the intricate process of normal embryogenesis.


Sign in / Sign up

Export Citation Format

Share Document