scholarly journals Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops

2021 ◽  
Author(s):  
João C. Sabino ◽  
Madalena R. de Almeida ◽  
Patricia L. Abreu ◽  
Ana M. Ferreira ◽  
Marco M. Domingues ◽  
...  

AbstractDNA oxidation by ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming. The conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) initiates developmental and cell-type-specific transcriptional programs through mechanisms that include changes in the chromatin structure. Here, we show that the presence of 5hmC in the transcribed DNA promotes the annealing of the nascent RNA to its template DNA strand, leading to the formation of an R-loop. The genome-wide distribution of 5hmC and R-loops show a positive correlation in mouse and human embryonic stem cells and overlap in half of all active genes. Moreover, R-loop resolution leads to differential expression of a subset of genes that are involved in crucial events during stem cell proliferation. Altogether, our data reveal that epigenetic reprogramming via TET activity promotes co-transcriptional R-loop formation, and disclose novel links between R-loops and the regulation of gene expression programs in stem cells.

2012 ◽  
Vol 13 (8) ◽  
pp. R69 ◽  
Author(s):  
Eun-Ang Raiber ◽  
Dario Beraldi ◽  
Gabriella Ficz ◽  
Heather E Burgess ◽  
Miguel R Branco ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3740
Author(s):  
Zuzana Nascakova ◽  
Barbora Boleslavska ◽  
Vaclav Urban ◽  
Anna Oravetzova ◽  
Edita Vlachova ◽  
...  

R-loops are three-stranded structures generated by annealing of nascent transcripts to the template DNA strand, leaving the non-template DNA strand exposed as a single-stranded loop. Although R-loops play important roles in physiological processes such as regulation of gene expression, mitochondrial DNA replication, or immunoglobulin class switch recombination, dysregulation of the R-loop metabolism poses a threat to the stability of the genome. A previous study in yeast has shown that the homologous recombination machinery contributes to the formation of R-loops and associated chromosome instability. On the contrary, here, we demonstrate that depletion of the key homologous recombination factor, RAD51, as well as RAD51 inhibition by the B02 inhibitor did not prevent R-loop formation induced by the inhibition of spliceosome assembly in human cells. However, we noticed that treatment of cells with B02 resulted in RAD51-dependent accumulation of R-loops in an early G1 phase of the cell cycle accompanied by a decrease in the levels of chromatin-bound ORC2 protein, a component of the pre-replication complex, and an increase in DNA synthesis. Our results suggest that B02-induced R-loops might cause a premature origin firing.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126590 ◽  
Author(s):  
Valentina Poletti ◽  
Alessia Delli Carri ◽  
Guidantonio Malagoli Tagliazucchi ◽  
Andrea Faedo ◽  
Luca Petiti ◽  
...  

Nature ◽  
2011 ◽  
Vol 473 (7347) ◽  
pp. 394-397 ◽  
Author(s):  
William A. Pastor ◽  
Utz J. Pape ◽  
Yun Huang ◽  
Hope R. Henderson ◽  
Ryan Lister ◽  
...  

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Sarina Ravens ◽  
Marjorie Fournier ◽  
Tao Ye ◽  
Matthieu Stierle ◽  
Doulaye Dembele ◽  
...  

The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cell (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL and NSL. The individual contribution of MSL and NSL to transcription regulation in mESCs is not well understood. Our genome-wide analysis show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds exclusively at promoters, iii) while MSL binds in gene bodies. Nsl1 regulates proliferation and cellular homeostasis of mESCs. MSL is the main HAT acetylating H4K16 in mESCs, is enriched at many mESC-specific and bivalent genes. MSL is important to keep a subset of bivalent genes silent in mESCs, while developmental genes require MSL for expression during differentiation. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs and during differentiation.


2019 ◽  
Author(s):  
Aseda Tena ◽  
Yuxiang Zhang ◽  
Nia Kyritsis ◽  
Anne Devorak ◽  
Jeffrey Zurita ◽  
...  

ABSTRACTMild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes (“RDC-genes”) that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome wide DSB identification approach that captures DSBs genome-wide via their ability to join to specific genomic Cas9/sgRNA-generated bait DSBs. In XRCC4/p53-deficient ES cells, we detected 7 RDCs, which were in genes, with two RDCs being robust. In contrast, in NPCs derived from these ES cell lines, we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ES cells provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.SIGNIFICANCE STATEMENTWe previously discovered a set of long neural genes susceptible to frequent DNA breaks in primary mouse brain progenitor cells. We termed these genes RDC-genes. RDC-gene breakage during brain development might alter neural gene function and contribute to neurological diseases and brain cancer. To provide an approach to characterize the unknown mechanism of neural RDC-gene breakage, we asked whether RDC-genes appear in neural progenitors differentiated from embryonic stem cells in culture. Indeed, robust RDC-genes appeared in neural progenitors differentiated in culture and many overlapped with robust RDC-genes in primary brain progenitors. These studies indicate that in vitro development of neural progenitors provides a model system for elucidating how RDC-genes are formed.


2011 ◽  
Vol 195 (6) ◽  
pp. i9-i9 ◽  
Author(s):  
Bart A. Westerman ◽  
A. Koen Braat ◽  
Nicole Taub ◽  
Marko Potman ◽  
Joseph H.A. Vissers ◽  
...  

Epigenomics ◽  
2021 ◽  
Author(s):  
Sonal Saxena ◽  
Sumana Choudhury ◽  
Pranay Amruth Maroju ◽  
Anuhya Anne ◽  
Lov Kumar ◽  
...  

Aim: To study the effects of DNMT1 overexpression on transcript levels of genes dysregulated in schizophrenia and on genome-wide methylation patterns. Materials & methods: Transcriptome and DNA methylome comparisons were made between R1 (wild-type) and Dnmt1tet/tet mouse embryonic stem cells and neurons overexpressing DNMT1. Genes dysregulated in both Dnmt1tet/tet cells and schizophrenia patients were studied further. Results & conclusions: About 50% of dysregulated genes in patients also showed altered transcript levels in Tet/Tet neurons in a DNA methylation-independent manner. These neurons unexpectedly showed genome-wide hypomethylation, increased transcript levels of Tet1 and Apobec 1-3 genes and increased activity and copy number of LINE-1 elements. The observed similarities between Tet/Tet neurons and schizophrenia brain samples reinforce DNMT1 overexpression as a risk factor.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Susan L. Kloet ◽  
Ino D. Karemaker ◽  
Lisa van Voorthuijsen ◽  
Rik G. H. Lindeboom ◽  
Marijke P. Baltissen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document