scholarly journals Characterizing interactions between the microtubule-binding protein CLIP-170 and F-actin

2021 ◽  
Author(s):  
Yueh-Fu O. Wu ◽  
Rachel A. Miller ◽  
Emily O. Alberico ◽  
Nora T. Nelson ◽  
Erin M. Jonasson ◽  
...  

AbstractThe cooperation between the actin and microtubule (MT) cytoskeletons is important for cellular processes such as cell migration and muscle cell development. Full understanding of how this cooperation occurs has yet to be sufficiently developed. The MT plus-end tracking protein (+TIP) CLIP-170 has been implicated in this actin-MT coordination by associating with the actin-binding signaling protein IQGAP1, and by promoting actin polymerization through binding with formins. Thus far, CLIP-170’s interactions with actin were assumed to be indirect. Here, we demonstrate that CLIP-170 can bind to filamentous actin (F-actin) directly. The affinity is relatively weak, but is strong enough to be significant in the actin-rich cortex, where actin concentrations can be extremely high. Using CLIP-170 fragments and mutants, we show that the direct CLIP-170:actin interaction is independent of the FEED domain, the region that mediates formin-dependent actin polymerization, and that the CLIP-170 F-actin-binding region overlaps with the MT-binding region. Consistent with these observations, in vitro competition assays indicate that CLIP-170:F-actin and CLIP-170:MT interactions are mutually exclusive. Taken together, these observations lead us to speculate that direct CLIP-170:F-actin interactions may function to reduce the stability of MTs in actin-rich regions of the cell, as previously proposed for EB1.

2008 ◽  
Vol 295 (5) ◽  
pp. C1113-C1122 ◽  
Author(s):  
Anne E. Kruchten ◽  
Eugene W. Krueger ◽  
Yu Wang ◽  
Mark A. McNiven

Cortactin is an actin-binding protein that is overexpressed in many cancers and is a substrate for both tyrosine and serine/threonine kinases. Tyrosine phosphorylation of cortactin has been observed to increase cell motility and invasion in vivo, although it has been reported to have both positive and negative effects on actin polymerization in vitro. In contrast, serine phosphorylation of cortactin has been shown to stimulate actin assembly in vitro. Currently, the effects of cortactin serine phosphorylation on cell migration are unclear, and furthermore, how the distinct phospho-forms of cortactin may differentially contribute to cell migration has not been directly compared. Therefore, we tested the effects of different tyrosine and serine phospho-mutants of cortactin on lamellipodial protrusion, actin assembly within cells, and focal adhesion dynamics. Interestingly, while expression of either tyrosine or serine phospho-mimetic cortactin mutants resulted in increased lamellipodial protrusion and cell migration, these effects appeared to be via distinct processes. Cortactin mutants mimicking serine phosphorylation appeared to predominantly affect actin polymerization, whereas mutation of cortactin tyrosine residues resulted in alterations in focal adhesion turnover. Thus these findings provide novel insights into how distinct phospho-forms of cortactin may differentially contribute to actin and focal adhesion dynamics to control cell migration.


2020 ◽  
Vol 36 (1) ◽  
pp. 35-60
Author(s):  
Rachel S. Kadzik ◽  
Kaitlin E. Homa ◽  
David R. Kovar

Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.


2004 ◽  
Vol 15 (10) ◽  
pp. 4735-4748 ◽  
Author(s):  
Marleen Van Troys ◽  
Kanako Ono ◽  
Daisy Dewitte ◽  
Veronique Jonckheere ◽  
Natalie De Ruyck ◽  
...  

Generating specific actin structures via controlled actin polymerization is a prerequisite for eukaryote development and reproduction. We here report on an essential Caenorhabditis elegans protein tetraThymosinβ expressed in developing neurons and crucial during oocyte maturation in adults. TetraThymosinβ has four repeats, each related to the actin monomer-sequestering protein thymosinβ 4 and assists in actin filament elongation. For homologues with similar multirepeat structures, a profilin-like mechanism of ushering actin onto filament barbed ends, based on the formation of a 1:1 complex, is proposed to underlie this activity. We, however, demonstrate that tetraThymosinβ binds multiple actin monomers via different repeats and in addition also interacts with filamentous actin. All repeats need to be functional for attaining full activity in various in vitro assays. The activities on actin are thus a direct consequence of the repeated structure. In containing both G- and F-actin interaction sites, tetraThymosinβ may be reminiscent of nonhomologous multimodular actin regulatory proteins implicated in actin filament dynamics. A mutation that suppresses expression of tetraThymosinβ is homozygous lethal. Mutant organisms develop into adults but display a dumpy phenotype and fail to reproduce as their oocytes lack essential actin structures. This strongly suggests that the activity of tetraThymosinβ is of crucial importance at specific developmental stages requiring actin polymerization.


Endocrinology ◽  
2009 ◽  
Vol 150 (8) ◽  
pp. 3800-3806 ◽  
Author(s):  
Sun-Gyun Kim ◽  
Soo-Jeong Jang ◽  
Jaemog Soh ◽  
Keesook Lee ◽  
Jin-Ki Park ◽  
...  

Ectodermal neural cortex (ENC) 1, a member of the kelch family of genes, is an actin-binding protein and plays a pivotal role in neuronal and adipocyte differentiation. The present study was designed to examine the gonadotropin regulation and action of ENC1 during the ovulatory process in immature rats. The levels of ENC1 mRNA and protein were stimulated by LH/human chorionic gonadotropin (hCG) within 3 h both in vivo and in vitro. In situ hybridization analysis revealed that ENC1 mRNA was localized not only in theca/interstitial cells but also in granulosa cells of preovulatory follicles but not of growing follicles in pregnant mare’s serum gonadotropin/hCG-treated ovaries. LH-induced ENC1 expression was suppressed by a high dose of protein kinase C inhibitor RO 31-8220 (10 μm) but not by low doses of RO 31-8220 (0.1–1.0 μm), suggesting the involvement of atypical protein kinase C. ENC1 was detected in both nucleus and cytoplasm that was increased by LH/hCG treatment. Both biochemical and morphological analysis revealed that LH/hCG treatment increased actin polymerization within 3 h in granulosa cells. Interestingly, ENC1 physically associated with actin and treatment with cytochalasin D, an actin-depolymerizing agent, abolished this association. Confocal microscopy further demonstrated the colocalization of ENC1 with filamentous actin (F-actin). The present study demonstrates that LH/hCG stimulates ENC1 expression and increases F-actin formation in granulosa cells. The present study further shows the physical association of ENC1 and F-actin, implicating the role of ENC1 in cytoskeletal reorganization during the differentiation of granulosa cells.


2003 ◽  
Vol 375 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Steven J. WINDER ◽  
Thomas JESS ◽  
Kathryn R. AYSCOUGH

The association of F-actin (filamentous actin) with a large number of binding proteins is essential for cellular function. Actin-binding proteins control the dynamics of actin filaments, nucleate new filaments and facilitate formation of higher-order structures such as actin bundles. The yeast gene SCP1 encodes a small protein with significant homology to mammalian SM22/transgelin. We have investigated the role of Scp1p in budding yeast to probe the fundamental role of this family of proteins. Here, we demonstrate that Scp1p binds to F-actin and induces the formation of tight F-actin bundles in vitro. Deletion of SCP1 in yeast lacking the actin-bundling protein, fimbrin (Sac6p), exacerbates the disrupted actin phenotype and enhances latrunculin-A sensitivity. Furthermore, Scp1p co-localizes with actin in cortical patches and its localization is lost in the presence of latrunculin-A. Our data support a role for Scp1p in bundling actin filaments and, in concert with Sac6p, acting as a second actin-bundling activity crucial to the stability of the yeast actin cytoskeleton.


2010 ◽  
Vol 190 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Huaqing Cai ◽  
Satarupa Das ◽  
Yoichiro Kamimura ◽  
Yu Long ◽  
Carole A. Parent ◽  
...  

In chemotactic cells, G protein–coupled receptors activate Ras proteins, but it is unclear how Ras-associated pathways link extracellular signaling to cell migration. We show that, in Dictyostelium discoideum, activated forms of RasC prolong the time course of TORC2 (target of rapamycin [Tor] complex 2)-mediated activation of a myristoylated protein kinase B (PKB; PKBR1) and the phosphorylation of PKB substrates, independently of phosphatidylinositol-(3,4,5)-trisphosphate. Paralleling these changes, the kinetics of chemoattractant-induced adenylyl cyclase activation and actin polymerization are extended, pseudopodial activity is increased and mislocalized, and chemotaxis is impaired. The effects of activated RasC are suppressed by deletion of the TORC2 subunit PiaA. In vitro RasCQ62L-dependent PKB phosphorylation can be rapidly initiated by the addition of a PiaA-associated immunocomplex to membranes of TORC2-deficient cells and blocked by TOR-specific inhibitor PP242. Furthermore, TORC2 binds specifically to the activated form of RasC. These results demonstrate that RasC is an upstream regulator of TORC2 and that the TORC2–PKB signaling mediates effects of activated Ras proteins on the cytoskeleton and cell migration.


2008 ◽  
Vol 183 (5) ◽  
pp. 865-879 ◽  
Author(s):  
Christian Frantz ◽  
Gabriela Barreiro ◽  
Laura Dominguez ◽  
Xiaoming Chen ◽  
Robert Eddy ◽  
...  

Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H+ efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Fei Xue ◽  
Deanna M. Janzen ◽  
David A. Knecht

Numerous F-actin containing structures are involved in regulating protrusion of membrane at the leading edge of motile cells. We have investigated the structure and dynamics of filopodia as they relate to events at the leading edge and the function of the trailing actin networks. We have found that although filopodia contain parallel bundles of actin, they contain a surprisingly nonuniform spatial and temporal distribution of actin binding proteins. Along the length of the actin filaments in a single filopodium, the most distal portion contains primarily T-plastin, while the proximal portion is primarily bound byα-actinin and coronin. Some filopodia are stationary, but lateral filopodia move with respect to the leading edge. They appear to form a mechanical link between the actin polymerization network at the front of the cell and the myosin motor activity in the cell body. The direction of lateral filopodial movement is associated with the direction of cell migration. When lateral filopodia initiate from and move toward only one side of a cell, the cell will turn opposite to the direction of filopodial flow. Therefore, this filopodia-myosin II system allows actin polymerization driven protrusion forces and myosin II mediated contractile force to be mechanically coordinated.


2002 ◽  
Vol 13 (7) ◽  
pp. 2334-2346 ◽  
Author(s):  
Makoto Kanzaki ◽  
Robert T. Watson ◽  
June Chunqiu Hou ◽  
Mark Stamnes ◽  
Alan R. Saltiel ◽  
...  

TC10 is a member of the Rho family of small GTP-binding proteins that has previously been implicated in the regulation of insulin-stimulated GLUT4 translocation in adipocytes. In a manner similar to Cdc42-stimulated actin-based motility, we have observed that constitutively active TC10 (TC10/Q75L) can induce actin comet tails in Xenopus oocyte extracts in vitro and extensive actin polymerization in the perinuclear region when expressed in 3T3L1 adipocytes. In contrast, expression of TC10/Q75L completely disrupted adipocyte cortical actin, which was specific for TC10, because expression of constitutively active Cdc42 was without effect. The effect of TC10/Q75L to disrupt cortical actin was abrogated after deletion of the amino terminal extension (ΔN-TC10/Q75L), whereas this deletion retained the ability to induce perinuclear actin polymerization. In addition, alteration of perinuclear actin by expression of TC10/Q75L, a dominant-interfering TC10/T31N mutant or a mutant N-WASP protein (N-WASP/ΔVCA) reduced the rate of VSV G protein trafficking to the plasma membrane. Furthermore, TC10 directly bound to Golgi COPI coat proteins through a dilysine motif in the carboxyl terminal domain consistent with a role for TC10 regulating actin polymerization on membrane transport vesicles. Together, these data demonstrate that TC10 can differentially regulate two types of filamentous actin in adipocytes dependent on distinct functional domains and its subcellular compartmentalization.


PLoS Biology ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. e3000925 ◽  
Author(s):  
Alexander Belyy ◽  
Felipe Merino ◽  
Oleg Sitsel ◽  
Stefan Raunser

Lifeact is a short actin-binding peptide that is used to visualize filamentous actin (F-actin) structures in live eukaryotic cells using fluorescence microscopy. However, this popular probe has been shown to alter cellular morphology by affecting the structure of the cytoskeleton. The molecular basis for such artefacts is poorly understood. Here, we determined the high-resolution structure of the Lifeact–F-actin complex using electron cryo-microscopy (cryo-EM). The structure reveals that Lifeact interacts with a hydrophobic binding pocket on F-actin and stretches over 2 adjacent actin subunits, stabilizing the DNase I-binding loop (D-loop) of actin in the closed conformation. Interestingly, the hydrophobic binding site is also used by actin-binding proteins, such as cofilin and myosin and actin-binding toxins, such as the hypervariable region of TccC3 (TccC3HVR) from Photorhabdus luminescens and ExoY from Pseudomonas aeruginosa. In vitro binding assays and activity measurements demonstrate that Lifeact indeed competes with these proteins, providing an explanation for the altering effects of Lifeact on cell morphology in vivo. Finally, we demonstrate that the affinity of Lifeact to F-actin can be increased by introducing mutations into the peptide, laying the foundation for designing improved actin probes for live cell imaging.


Sign in / Sign up

Export Citation Format

Share Document