scholarly journals Relative role of border restrictions, case finding and contact tracing in controlling SARS-CoV-2 in the presence of undetected transmission

Author(s):  
Rachael Pung ◽  
Hannah E. Clapham ◽  
Vernon J. Lee ◽  
Adam J Kucharski ◽  

Background Several countries have controlled the spread of COVID-19 through varying combinations of border restrictions, case finding, contact tracing and careful calibration on the resumption of domestic activities. However, evaluating the effectiveness of these measures based on observed cases alone is challenging as it does not reflect the transmission dynamics of missed infections. Methods Combining data on notified local COVID-19 cases with known and unknown sources of infections (i.e. linked and unlinked cases) in Singapore in 2020 with a transmission model, we reconstructed the incidence of missed infections and estimated the relative effectiveness of different types of outbreak control. We also examined implications for estimation of key real-time metrics -- the reproduction number and ratio of unlinked to linked cases, using observed data only as compared to accounting for missed infections. Findings Prior to the partial lockdown in Singapore, initiated in April 2020, we estimated 89% (95%CI 75-99%) of the infections caused by notified cases were contact traced, but only 12.5% (95%CI 2-69%) of the infections caused by missed infectors were identified. We estimated that the reproduction number was 1.23 (95%CI 0.98-1.54) after accounting for missed infections but was 0.90 (95%CI 0.79-1.1) based on notified cases alone. At the height of the outbreak, the ratio of missed to notified infections was 34.1 (95%CI 26.0-46.6) but the ratio of unlinked to linked infections was 0.81 (95%CI 0.59-1.36). Our results suggest that when case finding and contact tracing identifies at least 50% and 20% of the infections caused by missed and notified cases respectively, the reproduction number could be reduced by more than 14%, rising to 20% when contact tracing is 80% effective. Interpretation Depending on the relative effectiveness of border restrictions, case finding and contact tracing, unobserved outbreak dynamics can vary greatly. Commonly used metrics to evaluate outbreak control -- typically based on notified data -- could therefore misrepresent the true underlying outbreak. Funding Ministry of Health, Singapore.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ganna Rozhnova ◽  
Christiaan H. van Dorp ◽  
Patricia Bruijning-Verhagen ◽  
Martin C. J. Bootsma ◽  
Janneke H. H. M. van de Wijgert ◽  
...  

AbstractThe role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


2021 ◽  
Author(s):  
Ganna Rozhnova ◽  
Christiaan van Dorp ◽  
Patricia Bruijning-Verhagen ◽  
Martin Bootsma ◽  
Janneke van de Wijgert ◽  
...  

Abstract The role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We used an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


Author(s):  
Akira Endo ◽  
Hiroshi Nishiura

Background. Migratory waterfowl annually migrate over the continents along the routes known as flyways, serving as carriers of avian influenza virus across distant locations. Prevalence of influenza varies with species, and there are also geographical and temporal variations. However, the role of long-distance migration in multispecies transmission dynamics has yet to be understood. We constructed a mathematical model to capture the global dynamics of avian influenza, identifying species and locations that contribute to sustaining transmission.Methods. We devised a multisite, multispecies SIS (susceptible-infectious-susceptible) model, and estimated transmission rates within and between species in each geographical location from prevalence data. Parameters were directly sampled from posterior distribution under Bayesian inference framework. We then analyzed contribution of each species in each location to the global patterns of influenza transmission.Results. Transmission and migration parameters were estimated by Bayesian posterior sampling. The basic reproduction number was estimated at 1.1, slightly above the endemic threshold. Mallard was found to be the most important host with the highest transmission potential, and high- and middle-latitude regions appeared to act as hotspots of influenza transmission. The local reproduction number suggested that the prevalence of avian influenza in the Oceania region is dependent on the inflow of infected birds from other regions.Conclusion. Mallard exhibited the highest transmission rate among the species explored. Migration was suggested to be a key factor of the global prevalence of avian influenza, as transmission is locally sustainable only in the northern hemisphere, and the virus could be extinct in the Oceania region without migration.


Epidemics ◽  
2016 ◽  
Vol 17 ◽  
pp. 50-55 ◽  
Author(s):  
Sherry Towers ◽  
Fred Brauer ◽  
Carlos Castillo-Chavez ◽  
Andrew K.I. Falconar ◽  
Anuj Mubayi ◽  
...  

2020 ◽  
Author(s):  
Sujata Saha ◽  
Sumanta Saha

AbstractObjectiveThe COVID-19 pandemic is currently ongoing. Presently, due to the unavailability of a definitive vaccine to decrease its acquiring, it’s essential to understand its transmissibility in the community by undetected cases to control its transmission. This study aims to study this context using mathematical modelling.MethodsA COVID-19 transmission model was framed that estimated the basic reproduction number (R0, a measurement of disease risk) using the next-generation method. It explored the contribution of exposed and infected (detected and undetected) individuals, and environmental pathogen to the overall risk of infection spreading, utilizing the publicly reported data of this infection in Maharashtra between March 22, 2020, and May 4, 2020. A sensitivity analysis was performed to study the effect of a rising number of undetected cases to R0.ResultsThe estimated basic reproduction number is R0 = 4.63, which increases rapidly with the rise in the undetected COVID-19 cases. Although the exposed individuals made the largest contribution to infection transmission (R1 = 2.42), the contaminated environment also played a significant role.ConclusionsIt is crucial to identify the individuals exposed and infected to COVID-19 disease and isolate them to control its transmission. The awareness of the role of fomites in infection transmission is also important in this regard.


Author(s):  
William J. Bradshaw ◽  
Ethan C. Alley ◽  
Jonathan H. Huggins ◽  
Alun L. Lloyd ◽  
Kevin M. Esvelt

AbstractContact tracing is critical to controlling COVID-19, but most protocols only “forward-trace” to notify people who were recently exposed. Using a stochastic branching-process model, we show that “bidirectional” tracing to identify infector individuals and their other infectees robustly improves outbreak control, reducing the effective reproduction number (Reff) by at least ∼0.3 while dramatically increasing resilience to low case ascertainment and test sensitivity. Adding smartphone-based exposure notification can further reduce Reff by 0.25, but only if nearly all smartphones can detect exposure events. Our results suggest that with or without digital approaches, implementing bidirectional tracing will enable health agencies to control COVID-19 more effectively without requiring high-cost interventions.


Author(s):  
Mirjam E. Kretzschmar ◽  
Ganna Rozhnova ◽  
Michiel van Boven

AbstractBackgroundNovel coronavirus (SARS-CoV-2) has extended its range of transmission in all parts of the world, with substantial variation in rates of transmission and severity of associated disease. Many countries have implemented social distancing as a measure to control further spread.MethodsWe evaluate whether and under which conditions containment or slowing down COVID-19 epidemics are possible by isolation and contact tracing in settings with various levels of social distancing. We use a stochastic transmission model in which every person generates novel infections according to a probability distribution that is affected by the incubation period distribution (time from infection to symptoms), distribution of the latent period (time from infection to onset of infectiousness), and overall transmissibility. The model distinguishes between close contacts (e.g., within a household) and other contacts in the population. Social distancing affects the number of contacts outside but not within the household.FindingsThe proportion of asymptomatic or unascertained cases has a strong impact on the controllability of the disease. If the proportion of asymptomatic infections is larger than 30%, contact tracing and isolation cannot achieve containment for an R0 of 2.5. Achieving containment by social distancing requires a reduction of numbers of non-household contacts by around 90%. Depending on the realized level of contact reduction, tracing and isolation of only household contacts, or of household and non-household contacts are necessary to reduce the effective reproduction number to below 1. A combination of social distancing with isolation and contact tracing leads to synergistic effects that increase the prospect of containment.InterpretationIsolation and contact tracing can be an effective means to slow down epidemics, but only if the majority of cases are ascertained. In a situation with social distancing, contact tracing can act synergistically and tip the scale towards containment, and can therefore be a tool for controlling COVID-19 epidemics as part of an exit strategy from current lockdown measures.FundingThis research was partly funded by ZonMw project number 91216062.Research in contextEvidence before this studyAs of 8 April 2020, the novel coronavirus (SARS-CoV-2) has spread to more than 170 countries and has caused near 90,000 deaths of COVID-19 worldwide. In the absence of effective medicines and vaccines, the preventive measures are limited to social distancing, isolation of confirmed and suspected cases, and identification and quarantining of their contacts. Evidence suggests that a substantial portion of transmission may occur before the onset of symptoms and before cases can be isolated, and that many cases remain unascertained. This has potentially important implications for the prospect of containment by combinations of these measures.Added value of this studyUsing a stochastic transmission model armed with current best estimates of epidemiological parameters, we evaluated under which conditions containment could be achieved with combinations of social distancing, isolation and contact tracing. We investigated the level of social distancing needed for containment, and how an additional implementation of isolation and contact tracing may likely help to in reducing the effective reproduction number to below 1, the critical threshold. We analyzed what proportion of household and non-household contacts need to be isolated effectively to achieve containment depending on the level of social distancing in the population. We estimated the impact of combinations of these measures on epidemic growth rate and doubling time for the number of infections. We find that under realistic assumptions on the level of social distancing, additional isolation and contact tracing are needed for stopping the epidemic. Whether quarantining only household contacts is sufficient, depends on levels of social distancing and timeliness of tracing and isolation.Implications of all the available evidenceOur analyses based on best understanding of the epidemiology of COVID-19, highlight that if social distancing is not complete, isolation and contact tracing at least of household contacts can help to delay and lower the epidemic peak. High levels of timely contact tracing of household and non-household contacts may be sufficient to control the epidemic.


Author(s):  
Sanyi Tang ◽  
Biao Tang ◽  
Nicola Luigi Bragazzi ◽  
Fan Xia ◽  
Tangjuan Li ◽  
...  

AbstractBefore the lock-down of Wuhan/Hubei/China, on January 23rd 2020, a large number of individuals infected by COVID-19 moved from the epicenter Wuhan and the Hubei province due to the Spring Festival, resulting in an epidemic in the other provinces including the Shaanxi province. The epidemic scale in Shaanxi was comparatively small and with half of cases being imported from the epicenter. Based on the complete epidemic data including the symptom onset time and transmission chains, we calculate the control reproduction number (1.48-1.69) in Xi’an. We could also compute the time transition, for each imported or local case, from the latent, to infected, to hospitalized compartment, as well as the effective reproduction number. This calculation enables us to revise our early deterministic transmission model to a stochastic discrete epidemic model with case importation and parameterize it. Our model-based analyses reveal that the newly generated infections decay to zero quickly; the cumulative number of case-driven quarantined individuals via contact tracing stabilize at a manageable level, indicating that the intervention strategies implemented in the Shaanxi province have been effective. Risk analyses, important for the consideration of “resumption of work”, show that a large second outbreak is expected if the level of case importation remains at the same level as between January 10th and February 4th 2020. However, if the case importation decreases by 30%, 60% and 90%, the second outbreak if happening will be of small-scale assuming contact tracing and quarantine/isolation remain as effective as before. Finally, we consider the effects of intermittent inflow with a Poisson distribution on the likelihood of multiple outbreaks. We believe the developed methodology and stochastic model provide an important model framework for the evaluation of revising travel restriction rules in the consideration of resuming social-economic activities while managing the disease control with potential case importation.


Author(s):  
Jordan Douglas ◽  
Fabio K Mendes ◽  
Remco Bouckaert ◽  
Dong Xie ◽  
Cinthy L Jimenez-Silva ◽  
...  

Most populated corners of the planet have been exposed to SARS-CoV-2, the coronavirus behind the COVID-19 pandemic. We examined the progression of COVID-19 in four island nations that fared well over the first three months of the pandemic: New Zealand, Australia, Iceland, and Taiwan. Using Bayesian phylodynamic methods, we estimated the effective reproduction number of COVID-19 in the four islands as 1-1.4 during early stages of the pandemic, and show that it declined below 1 as human movement was restricted. Our reconstruction of COVID-19's phylogenetic history indicated that this disease was introduced many times into each island, and that introductions slowed down markedly when the borders closed. Finally, we found that New Zealand clusters identified via standard health surveillance largely agreed with those defined by genomic data. Our findings can assist public health decisions in countries with circulating SARS-CoV-2, and support efforts to mitigate any second waves or future epidemics.


Sign in / Sign up

Export Citation Format

Share Document