scholarly journals TMEM106B modifies TDP-43 pathology in human ALS brain and cell-based models of TDP-43 proteinopathy

2021 ◽  
Author(s):  
Fei Mao ◽  
John Robinson ◽  
Travis Unger ◽  
Marijan Posavi ◽  
Defne Amado ◽  
...  

The neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TAR DNA-binding protein-43 (TDP-43) inclusions (FTLD-TDP) share the neuropathological hallmark of aggregates of TDP-43. However, factors governing the severity and regional distribution of TDP-43 pathology, which may account for the divergent clinical presentations of ALS and FTLD-TDP, are not well-understood. Here, we investigated the influence of genotypes at TMEM106B, a locus associated with risk for FTLD-TDP, and hexanucleotide repeat expansions in C9orf72, a known genetic cause for both ALS and FTLD-TDP, on global TDP-43 pathology and regional distribution of TDP-43 pathology in 899 postmortem cases from a spectrum of neurodegenerative diseases. We found that, among the 110 ALS cases, minor (C)- allele homozygotes at the TMEM106B locus sentinel SNP rs1990622 had more TDP-43 pathology globally, as well as in select brain regions. C9orf72 expansions similarly associated with greater TDP-43 pathology in ALS. However, adjusting for C9orf72 expansion status did not affect the relationship between TMEM106B genotype and TDP-43 pathology. In order to elucidate the direction of causality for this association, we directly manipulated TMEM106B levels in an inducible cell system that expresses mislocalized TDP-43 protein. We found that partial knockdown of TMEM106B, to levels similar to what would be expected in rs1990622 C allele carriers, led to development of more TDP-43 cytoplasmic aggregates, which were more insoluble, in this system. Taken together, our results support a causal role for TMEM106B in modifying the development of TDP-43 proteinopathy.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Maria Babu ◽  
Filippo Favretto ◽  
Alain Ibáñez de Opakua ◽  
Marija Rankovic ◽  
Stefan Becker ◽  
...  

AbstractAmyotrophic lateral sclerosis and frontotemporal dementia are two neurodegenerative diseases with overlapping clinical features and the pathological hallmark of cytoplasmic deposits of misfolded proteins. The most frequent cause of familial forms of these diseases is a hexanucleotide repeat expansion in the non-coding region of the C9ORF72 gene that is translated into dipeptide repeat polymers. Here we show that proline/arginine repeat polymers derail protein folding by sequestering molecular chaperones. We demonstrate that proline/arginine repeat polymers inhibit the folding catalyst activity of PPIA, an abundant molecular chaperone and prolyl isomerase in the brain that is altered in amyotrophic lateral sclerosis. NMR spectroscopy reveals that proline/arginine repeat polymers bind to the active site of PPIA. X-ray crystallography determines the atomic structure of a proline/arginine repeat polymer in complex with the prolyl isomerase and defines the molecular basis for the specificity of disease-associated proline/arginine polymer interactions. The combined data establish a toxic mechanism that is specific for proline/arginine dipeptide repeat polymers and leads to derailed protein homeostasis in C9orf72-associated neurodegenerative diseases.


2021 ◽  
Vol 4 (4) ◽  
pp. e202000764
Author(s):  
Arun Pal ◽  
Benedikt Kretner ◽  
Masin Abo-Rady ◽  
Hannes Glaβ ◽  
Banaja P Dash ◽  
...  

Intronic hexanucleotide repeat expansions (HREs) in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis, a devastating, incurable motoneuron (MN) disease. The mechanism by which HREs trigger pathogenesis remains elusive. The discovery of repeat-associated non-ATG (RAN) translation of dipeptide repeat proteins (DPRs) from HREs along with reduced exonic C9ORF72 expression suggests gain of toxic functions (GOFs) through DPRs versus loss of C9ORF72 functions (LOFs). Through multiparametric high-content (HC) live profiling in spinal MNs from induced pluripotent stem cells and comparison to mutant FUS and TDP43, we show that HRE C9ORF72 caused a distinct, later spatiotemporal appearance of mainly proximal axonal organelle motility deficits concomitant to augmented DNA double-strand breaks (DSBs), RNA foci, DPRs, and apoptosis. We show that both GOFs and LOFs were necessary to yield the overall C9ORF72 pathology. Increased RNA foci and DPRs concurred with onset of axon trafficking defects, DSBs, and cell death, although DSB induction itself did not phenocopy C9ORF72 mutants. Interestingly, the majority of LOF-specific DEGs were shared with HRE-mediated GOF DEGs. Finally, C9ORF72 LOF was sufficient—albeit to a smaller extent—to induce premature distal axonal trafficking deficits and increased DSBs.


2019 ◽  
Vol 79 (3) ◽  
pp. 284-295
Author(s):  
Sanjana Shellikeri ◽  
Julia Keith ◽  
Sandra E Black ◽  
Lorne Zinman ◽  
Yana Yunusova

Abstract Bulbar amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative subtype affecting speech and swallowing motor functions as well as associated with the burden of cognitive deficits. The neuroanatomical underpinnings of bulbar ALS are not well understood. The aim of this study was to compare neuropathology of the speech network (SpN) between 3 cases of bulbar-onset ALS (bALS), 3 cases of spinal-onset ALS (sALS) with antemortem bulbar ALS (sALSwB) against 3 sALS without antemortem bulbar ALS (sALSnoB) and 3 controls. Regional distribution and severity of neuronal loss, TDP-43 (transactive response DNA-binding protein of 43 kDa), and tau proteinopathy were examined. All 3 bALS cases showed marked neuronal loss and severe proteinopathy across most SpN regions; sALSwB cases showed no neuronal loss but mild and variable TDP-43 pathology in focal regions; sALSnoB cases demonstrated an absence of pathology. Two bALS cases had coexisting tauopathy in SpN regions, which was not noted in any sALS cases. The findings suggested that bALS may have a distinct neuropathological signature characterized by marked neuronal loss and polypathology in the SpN. Milder TDP-43 pathology in the SpN for sALSwB cases suggested a link between severity of bulbar ALS and SpN damage. Findings support a clinicopathologic link between bulbar symptoms and pathology in the SpN.


2014 ◽  
Vol 71 (6) ◽  
pp. 771 ◽  
Author(s):  
Jill S. Goldman ◽  
Catarina Quinzii ◽  
Jane Dunning-Broadbent ◽  
Cheryl Waters ◽  
Hiroshi Mitsumoto ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyuk Sung Kwon ◽  
Seong-Ho Koh

AbstractNeuroinflammation is associated with neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Microglia and astrocytes are key regulators of inflammatory responses in the central nervous system. The activation of microglia and astrocytes is heterogeneous and traditionally categorized as neurotoxic (M1-phenotype microglia and A1-phenotype astrocytes) or neuroprotective (M2-phenotype microglia and A2-phenotype astrocytes). However, this dichotomized classification may not reflect the various phenotypes of microglia and astrocytes. The relationship between these activated glial cells is also very complicated, and the phenotypic distribution can change, based on the progression of neurodegenerative diseases. A better understanding of the roles of microglia and astrocytes in neurodegenerative diseases is essential for developing effective therapies. In this review, we discuss the roles of inflammatory response in neurodegenerative diseases, focusing on the contributions of microglia and astrocytes and their relationship. In addition, we discuss biomarkers to measure neuroinflammation and studies on therapeutic drugs that can modulate neuroinflammation.


2021 ◽  
Vol 7 (2) ◽  
pp. e575
Author(s):  
Carlos Estevez-Fraga ◽  
Francesca Magrinelli ◽  
Davina Hensman Moss ◽  
Eoin Mulroy ◽  
Giulia Di Lazzaro ◽  
...  

ObjectiveHexanucleotide repeat expansions (HREs) in C9orf72 are a major cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We aimed to determine the frequency and phenomenology of movement disorders (MD) in carriers of HRE in C9orf72 through a retrospective review of patients' medical records.MethodsWe retrospectively reviewed the clinical records of patients carrying a C9orf72 HRE in the pathogenic range and compared the characteristics of patients with and without MD.ResultsSeventeen of 40 patients with a C9orf72 HRE had a documented MD. In 6 of 17, MD were the presenting symptom, and in 2 of 17, MD were the sole manifestation of the disease. FTD was present in 13 of 17 patients, ALS in 5 of 17 patients, and 2 of 17 patients did not develop FTD or ALS. Thirteen of 17 patients had more than one MD. The most common MD were parkinsonism and tremor (resembling essential tremor syndrome), each one present in 11 of 17 patients. Distal, stimulus-sensitive upper limbs myoclonus was present in 6 of 17 patients and cervical dystonia in 5 of 17 patients. Chorea was present in 5 of 17 patients, 4 of whom showed marked orofacial dyskinesias. The most frequent MD combination was tremor and parkinsonism, observed in 8 of 17 patients, 5 of whom also had myoclonus. C9orf72 patients without MD had shorter follow-up times and higher proportion of ALS, although these results did not survive the correction for multiple comparisons.ConclusionsMD are frequent in C9orf72. They may precede signs of ALS or FTD, or even be present in isolation. Parkinsonism, tremor, and myoclonus are most commonly observed.


2021 ◽  
Author(s):  
Yi-Ju Tseng ◽  
Siara N. Sandwith ◽  
Katelyn M. Green ◽  
Antonio E. Chambers ◽  
Amy Krans ◽  
...  

ABSTRACTGGGGCC (G4C2) hexanucleotide repeat expansions (HRE) in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Repeat-associated non-AUG (RAN) translation of this expansion generates toxic proteins that accumulate in patient brains and contribute to disease pathogenesis. The DEAH-Box Helicase 36 (DHX36/G4R1) plays active roles in RNA and DNA G-quadruplex (G4) resolution in cells. As G4C2 repeats form G4 structures in vitro, we sought to determine the impact of manipulating DHX36 expression on repeat transcription and RAN translation. We found that DHX36 depletion suppresses RAN translation from reporter constructs in a repeat length dependent manner while overexpression of DHX36 enhances RAN translation from G4C2 reporter RNAs. Taken together, these results suggest that DHX36 is active in regulating G4C2 repeat translation, providing potential implications for therapeutic development in nucleotide repeats expansion disorders.


2015 ◽  
Vol 36 (9) ◽  
pp. 2660.e1-2660.e8 ◽  
Author(s):  
Ji He ◽  
Lu Tang ◽  
Beben Benyamin ◽  
Sonia Shah ◽  
Gib Hemani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document