scholarly journals USING PHYLOGENETICS TO ACCURATELY INFER HIV-1 TRANSMISSION DIRECTION

Author(s):  
Christian Julian Villabona Arenas ◽  
Stephane Hue ◽  
James Baxter ◽  
Matthew Hall ◽  
Katrina A Lythgoe ◽  
...  

Inferring the direction of transmission between linked individuals living with HIV provides unparalleled power to understand the epidemiology that determines transmission. State-of-the-art approaches to infer directionality use phylogenetic ancestral state reconstruction to identify the individual in whom the most recent common ancestor of the virus populations originated. However, these methods vary in their accuracy when applied to different datasets and it is currently unclear under what circumstances inferring directionality is inaccurate and when bias is more likely. To evaluate the performance of phylogenetic ancestral state reconstruction, we inferred directionality for 112 HIV transmission pairs where the direction of transmission was known, and detailed additional information was available. Next, we fit a statistical model to evaluate the extent to which epidemiological, sampling, genetic and phylogenetic factors influenced the outcome of the inference. Third, we repeated the analysis under real-life conditions when only routinely collected data are available. We found that the inference of directionality depends principally on the topology class and branch length characteristics of the phylogeny. Specifically, directionality is most correctly inferred when the phylogenetic diversity and the minimum root-to-tip distance in the transmitter is greater than that of the recipient partner and when the minimum inter-host patristic distance is large. Similarly, under real-life conditions, the probability of identifying the correct transmitter increases from 52%--when a monophyletic-monophyletic or paraphyletic-polyphyletic tree topology is observed, when the sample size in both partners is small and when the tip closest to the root does not agree with the state at the root--to 93% when a paraphyletic-monophyletic topology is observed, when the sample size is large and when the tip closest to the root agrees with the state at the root. Our results support two conclusions. First, that discordance between previous studies in inferring transmission direction can be explained by differences in key phylogenetic properties that arise due to different evolutionary, epidemiological and sampling processes; and second that easily calculated metrics from the phylogenetic tree of the transmission pair can be used to evaluate the accuracy of inferring directionality under real-life conditions for use in population-wide studies. However, given that these methods entail considerable uncertainty, we strongly advise against using these methods for individual pair-level analysis.

2019 ◽  
Author(s):  
Priscila Karla Ferreira Santos ◽  
Maria Cristina Arias ◽  
Karen M. Kapheim

AbstractDiapause is a physiological arrest of development ahead of adverse environmental conditions and is a critical phase of the life cycle of many insects. In bees, diapause has been reported in species from all seven taxonomic families. However, they exhibit a variety of diapause strategies. These different strategies are of particular interest since shifts in the phase of the insect life cycle in which diapause occurs has been hypothesized to promote the evolution of sociality. Here we provide a comprehensive evaluation of this hypothesis with phylogenetic analysis and ancestral state reconstruction of the ecological and evolutionary factors associated with diapause phase. We find that social lifestyle, latitude, and voltinism are significant predictors of the life stage in which diapause occurs. Ancestral state reconstruction revealed that the most recent common ancestor of all bees likely exhibited developmental diapause and shifts to adult or reproductive diapause have occurred in the ancestors of lineages in which social behavior has evolved. These results provide fresh insight regarding the role of diapause as a prerequisite for the evolution of sociality in bees.


2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Dong-Dong Yang ◽  
Gustavo M. de Billerbeck ◽  
Jin-jing Zhang ◽  
Frank Rosenzweig ◽  
Jean-Marie Francois

ABSTRACTHomology searches indicate thatSaccharomyces cerevisiaestrain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). YeastAADgenes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes,AAD4andAAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeastAADgenes are undergoing pseudogenization. The 5′ sequence ofAAD15has been deleted from the genome. Repair of anAAD3missense mutation at the catalytically essential Tyr73residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates thatAADgenes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeastAADgenes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeastAADgene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role forAADgenes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications.IMPORTANCEFunctional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the firstSaccharomyces cerevisiaegenome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-memberAADfamily. Here, we demonstrate that proteins encoded by two members of this family exhibit aliphatic and aryl-aldehyde reductase activity, and further that such activity can be recovered from pseudogenizedAADgenes via ancestral-state reconstruction. The phylogeny of yeastAADgenes suggests that these proteins may have played an important ancestral role in detoxifying aromatic aldehydes in ligninolytic fungi. However, in yeast adapted to niches rich in sugars,AADgenes become subject to mutational erosion. Our findings shed new light on the selective pressures and molecular mechanisms by which genes undergo pseudogenization.


2012 ◽  
Vol 81 (1) ◽  
pp. 43-54 ◽  
Author(s):  
James D. Reimer ◽  
Meifang Lin ◽  
Takuma Fujii ◽  
David J.W. Lane ◽  
Bert W. Hoeksema

The zoanthid genus Sphenopus (Cnidaria: Anthozoa: Zoantharia), like many other brachycnemic zoanthids, is found in shallow subtropical and tropical waters, but is uniquely unitary (solitary, monostomatous), azooxanthellate, and free-living. With sparse knowledge of its phylogenetic position, this study examines the phylogenetic position of Sphenopus within the family Sphenopidae utilizing specimens from southern Taiwan and Brunei collected in 1999-2011, and furthermore analyzes the evolution of its unique character set via ancestral state reconstruction analyses. Phylogenetic analyses surprisingly show Sphenopus to be phylogenetically positioned within the genus Palythoa, which is colonial (polystomatous), zooxanthellate, and attached to solid substrate. Ancestral state reconstruction strongly indicates that the unique characters of Sphenopus have evolved recently within Palythoa and only in the Sphenopuslineage. These results indicate that zoanthid body plans can evolve with rapidity, as in some other marine invertebrates, and that the traditional definitions of zoanthid genera may need reexamination.


Taxon ◽  
2016 ◽  
Vol 65 (3) ◽  
pp. 444-466 ◽  
Author(s):  
Kenneth Bauters ◽  
Pieter Asselman ◽  
David A. Simpson ◽  
A. Muthama Muasya ◽  
Paul Goetghebeur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document