scholarly journals Soft-Attention Improves Skin Cancer Classification Performance

Author(s):  
Soumyya Kanti Datta ◽  
Mohammad Abuzar Shaikh ◽  
Sargur N. Srihari ◽  
Mingchen Gao

In clinical applications, neural networks must focus on and highlight the most important parts of an input image. Soft-Attention mechanism enables a neural network to achieve this goal. This paper investigates the effectiveness of Soft-Attention in deep neural architectures. The central aim of Soft-Attention is to boost the value of important features and suppress the noise-inducing features. We compare the performance of VGG, ResNet, InceptionResNetv2 and DenseNet architectures with and without the Soft-Attention mechanism, while classifying skin lesions. The original network when coupled with Soft-Attention outperforms the baseline[14] by 4.7% while achieving a precision of 93.7% on HAM10000 dataset. Additionally, Soft-Attention coupling improves the sensitivity score by 3.8% compared to baseline[28] and achieves 91.6% on ISIC-2017 dataset. The code is publicly available at github.

2021 ◽  
Author(s):  
Soumya Kanti Datta ◽  
Mohammad Abuzar Shaikh ◽  
Sargur N. Srihari ◽  
Mingchen Gao

In clinical applications, neural networks must focus on and highlight the most important parts of an input image. Soft-Attention mechanism enables a neural network to achieve this goal. This paper investigates the effectiveness of Soft-Attention in deep neural architectures. The central aim of Soft-Attention is to boost the value of important features and suppress the noise-inducing features. We com-pare the performance of VGG, ResNet, Inception ResNetv2 and DenseNet architectures with and without the Soft-Attention mechanism, while classifying skin lesions. The original network when coupled with Soft-Attention outperforms the baseline[15] by 4.7% while achieving a precision of 93.7% on HAM10000 dataset. Additionally, Soft-Attention coupling improves the sensitivity score by 3.8% compared to baseline[29] and achieves 91.6% on ISIC-2017 dataset. The code is publicly available at github


2018 ◽  
Vol 6 (11) ◽  
pp. 216-216 ◽  
Author(s):  
Zhongheng Zhang ◽  
◽  
Marcus W. Beck ◽  
David A. Winkler ◽  
Bin Huang ◽  
...  

Author(s):  
Hannah Garcia Doherty ◽  
Roberto Arnaiz Burgueño ◽  
Roeland P. Trommel ◽  
Vasileios Papanastasiou ◽  
Ronny I. A. Harmanny

Abstract Identification of human individuals within a group of 39 persons using micro-Doppler (μ-D) features has been investigated. Deep convolutional neural networks with two different training procedures have been used to perform classification. Visualization of the inner network layers revealed the sections of the input image most relevant when determining the class label of the target. A convolutional block attention module is added to provide a weighted feature vector in the channel and feature dimension, highlighting the relevant μ-D feature-filled areas in the image and improving classification performance.


2021 ◽  
Vol 4 (1) ◽  
pp. 71-79
Author(s):  
Borys Igorovych Tymchenko

Nowadays, means of preventive management in various spheres of human life are actively developing. The task of automated screening is to detect hidden problems at an early stage without human intervention, while the cost of responding to them is low. Visual inspection is often used to perform a screening task. Deep artificial neural networks are especially popular in image processing. One of the main problems when working with them is the need for a large amount of well-labeled data for training. In automated screening systems, available neural network approaches have limitations on the reliability of predictions due to the lack of accurately marked training data, as obtaining quality markup from professionals is very expensive, and sometimes not possible in principle. Therefore, there is a contradiction between increasing the requirements for the precision of predictions of neural network models without increasing the time spent on the one hand, and the need to reduce the cost of obtaining the markup of educational data. In this paper, we propose the parametric model of the segmentation dataset, which can be used to generate training data for model selection and benchmarking; and the multi-task learning method for training and inference of deep neural networks for semantic segmentation. Based on the proposed method, we develop a semi-supervised approach for segmentation of salient regions for classification task. The main advantage of the proposed method is that it uses semantically-similar general tasks, that have better labeling than original one, what allows users to reduce the cost of the labeling process. We propose to use classification task as a more general to the problem of semantic segmentation. As semantic segmentation aims to classify each pixel in the input image, classification aims to assign a class to all of the pixels in the input image. We evaluate our methods using the proposed dataset model, observing the Dice score improvement by seventeen percent. Additionally, we evaluate the robustness of the proposed method to different amount of the noise in labels and observe consistent improvement over baseline version.


2020 ◽  
Author(s):  
Muhammad Awais ◽  
Xi Long ◽  
Bin Yin ◽  
Chen chen ◽  
Saeed Akbarzadeh ◽  
...  

Abstract Objective: In this paper, we propose to evaluate the use of a pre-trained convolutional neural networks (CNNs) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke® facial video frames. Using pre-trained CNNs as feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally very expensive. The features are extracted after fully connected layers (FCL’s), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet. Results: From around 2-h Fluke® video recording of seven neonate, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke® (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future a dedicated neural network trained on neonatal data or a transfer learning approach is required.


2021 ◽  
Vol 7 (9) ◽  
pp. 173
Author(s):  
Eduardo Paluzo-Hidalgo ◽  
Rocio Gonzalez-Diaz ◽  
Miguel A. Gutiérrez-Naranjo ◽  
Jónathan Heras

Simplicial-map neural networks are a recent neural network architecture induced by simplicial maps defined between simplicial complexes. It has been proved that simplicial-map neural networks are universal approximators and that they can be refined to be robust to adversarial attacks. In this paper, the refinement toward robustness is optimized by reducing the number of simplices (i.e., nodes) needed. We have shown experimentally that such a refined neural network is equivalent to the original network as a classification tool but requires much less storage.


2021 ◽  
Vol 7 ◽  
pp. e497
Author(s):  
Shakeel Shafiq ◽  
Tayyaba Azim

Deep neural networks have been widely explored and utilised as a useful tool for feature extraction in computer vision and machine learning. It is often observed that the last fully connected (FC) layers of convolutional neural network possess higher discrimination power as compared to the convolutional and maxpooling layers whose goal is to preserve local and low-level information of the input image and down sample it to avoid overfitting. Inspired from the functionality of local binary pattern (LBP) operator, this paper proposes to induce discrimination into the mid layers of convolutional neural network by introducing a discriminatively boosted alternative to pooling (DBAP) layer that has shown to serve as a favourable replacement of early maxpooling layer in a convolutional neural network (CNN). A thorough research of the related works show that the proposed change in the neural architecture is novel and has not been proposed before to bring enhanced discrimination and feature visualisation power achieved from the mid layer features. The empirical results reveal that the introduction of DBAP layer in popular neural architectures such as AlexNet and LeNet produces competitive classification results in comparison to their baseline models as well as other ultra-deep models on several benchmark data sets. In addition, better visualisation of intermediate features can allow one to seek understanding and interpretation of black box behaviour of convolutional neural networks, used widely by the research community.


2021 ◽  
Vol 8 (3) ◽  
pp. 533
Author(s):  
Budi Nugroho ◽  
Eva Yulia Puspaningrum

<p class="Abstrak">Saat ini banyak dikembangkan proses pendeteksian pneumonia berdasarkan citra paru-paru dari hasil foto rontgen (x-ray), sebagaimana juga dilakukan pada penelitian ini. Metode yang digunakan adalah <em>Convolutional Neural Network</em> (CNN) dengan arsitektur yang berbeda dengan sejumlah penelitian sebelumnya. Selain itu, penelitian ini juga memodifikasi model CNN dimana metode <em>Extreme Learning Machine</em> (ELM) digunakan pada bagian klasifikasi, yang kemudian disebut CNN-ELM. Dataset untuk uji coba menggunakan kumpulan citra paru-paru hasil foto rontgen pada Kaggle yang terdiri atas 1.583 citra normal dan 4.237 citra pneumonia. Citra asal pada dataset kaggle ini bervariasi, tetapi hampir semua diatas ukuran 1000x1000 piksel. Ukuran citra yang besar ini dapat membuat pemrosesan klasifikasi kurang efektif, sehingga mesin CNN biasanya memodifikasi ukuran citra menjadi lebih kecil. Pada penelitian ini, pengujian dilakukan dengan variasi ukuran citra input, untuk mengetahui pengaruhnya terhadap kinerja mesin pengklasifikasi. Hasil uji coba menunjukkan bahwa ukuran citra input berpengaruh besar terhadap kinerja klasifikasi pneumonia, baik klasifikasi yang menggunakan metode CNN maupun CNN-ELM. Pada ukuran citra input 200x200, metode CNN dan CNN-ELM menunjukkan kinerja paling tinggi. Jika kinerja kedua metode itu dibandingkan, maka Metode CNN-ELM menunjukkan kinerja yang lebih baik daripada CNN pada semua skenario uji coba. Pada kondisi kinerja paling tinggi, selisih akurasi antara metode CNN-ELM dan CNN mencapai 8,81% dan selisih F1 Score mencapai 0,0729. Hasil penelitian ini memberikan informasi penting bahwa ukuran citra input memiliki pengaruh besar terhadap kinerja klasifikasi pneumonia, baik klasifikasi menggunakan metode CNN maupun CNN-ELM. Selain itu, pada semua ukuran citra input yang digunakan untuk proses klasifikasi, metode CNN-ELM menunjukkan kinerja yang lebih baik daripada metode CNN.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>This research developed a pneumonia detection machine based on the lungs' images from X-rays (x-rays). The method used is the Convolutional Neural Network (CNN) with a different architecture from some previous research. Also, the CNN model is modified, where the classification process uses the Extreme Learning Machine (ELM), which is then called the CNN-ELM method. The empirical experiments dataset used a collection of lung x-ray images on Kaggle consisting of 1,583 normal images and 4,237 pneumonia images. The original image's size on the Kaggle dataset varies, but almost all of the images are more than 1000x1000 pixels. For classification processing to be more effective, CNN machines usually use reduced-size images. In this research, experiments were carried out with various input image sizes to determine the effect on the classifier's performance. The experimental results show that the input images' size has a significant effect on the classification performance of pneumonia, both the CNN and CNN-ELM classification methods. At the 200x200 input image size, the CNN and CNN-ELM methods showed the highest performance. If the two methods' performance is compared, then the CNN-ELM Method shows better performance than CNN in all test scenarios. The difference in accuracy between the CNN-ELM and CNN methods reaches 8.81% at the highest performance conditions, and the difference in F1-Score reaches 0.0729. This research provides important information that the size of the input image has a major influence on the classification performance of pneumonia, both classification using the CNN and CNN-ELM methods. Also, on all input image sizes used for the classification process, the CNN-ELM method shows better performance than the CNN method.</em></p>


2020 ◽  
Vol 7 (2) ◽  
pp. 373
Author(s):  
Teresia R. Savera ◽  
Winsya H. Suryawan ◽  
Agung Wahyu Setiawan

<p>Kanker kulit adalah salah satu jenis kanker yang dapat menyebabkan kematian sehingga diperlukan sebuah aplikasi perangkat lunak yang dapat digunakan untuk membantu melakukan deteksi dini kanker kulit dengan mudah. Sehingga diharapkan deteksi dini kanker kulit dapat terdeteksi lebih cepat. Pada penelitian ini terdapat dua metode yang digunakan untuk melakukan deteksi dini kanker kulit yaitu deteksi dengan klasifikasi secara regresi dan <em>artificial neural network</em> dengan arsitektur <em>convolutional neural network</em>. Akurasi yang diperoleh dengan menggunakan klasifikasi secara regresi adalah sebesar 75%. Sementara, akurasi deteksi yang didapatkan dengan menggunakan <em>convolutional neural network</em> adalah sebesar 76%. Hasil yang diperoleh dari kedua metoda ini masih dapat ditingkatkan pada penelitian lanjutan, yaitu dengan cara melakukan prapengolahan pada set data citra yang digunakan. Sehingga set data yang digunakan memiliki tingkat pencahayaan, sudut (pengambilan), serta ukuran citra yang sama. Apabila tersedia sumber daya komputasi yang besar, akan dilakukan penambahan jumlah citra yang digunakan, baik itu sebagai set data latih maupun uji.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Skin cancer is one type of cancer that can cause death for many people. Because of this, an application is needed to easily detect skin cancer early that the cancer can be handled with more quickly. In this study there were two methods used to detect skin cancer, namely detection by regression classification and detection by classifying using artificial neural networks with network convolutional architecture. Detection with regression classification gives an accuracy of 75%. While detection using convolutional neural networks gives an accuracy of 76%. These proposed early detection systems can be improved to increase the accuracy. For further development, several image processing techniques will be applied, such as contrast enhancement and color equalization. For future works, if there is more computational resource, more images can be used as dataset and implement the deep learning algorithm to improve the accuracy.</em></p><p><em><strong><br /></strong></em></p>


2020 ◽  
Vol 17 (9) ◽  
pp. 3867-3872
Author(s):  
Aniv Chakravarty ◽  
Jagadish S. Kallimani

Text summarization is an active field of research with a goal to provide short and meaningful gists from large amount of text documents. Extractive text summarization methods have been extensively studied where text is extracted from the documents to build summaries. There are various type of multi document ranging from different formats to domains and topics. With the recent advancement in technology and use of neural networks for text generation, interest for research in abstractive text summarization has increased significantly. The use of graph based methods which handle semantic information has shown significant results. When given a set of documents of English text files, we make use of abstractive method and predicate argument structures to retrieve necessary text information and pass it through a neural network for text generation. Recurrent neural networks are a subtype of recursive neural networks which try to predict the next sequence based on the current state and considering the information from previous states. The use of neural networks allows generation of summaries for long text sentences as well. This paper implements a semantic based filtering approach using a similarity matrix while keeping all stop-words. The similarity is calculated using semantic concepts and Jiang–Conrath similarity and making use of a recurrent neural network with an attention mechanism to generate summary. ROUGE score is used for measuring accuracy, precision and recall scores.


Sign in / Sign up

Export Citation Format

Share Document